Figures last updated on December 03, 2020 by Stefan Tabernig.
Please contact us with your new record-efficiency solar cell data at tabernig@amolf.nl.
The figures shown below provide an up-to-date comparison between world-record solar cell efficiencies for different materials and the fundamental detailed-balance efficiency limit.
These plots may be used with attribution to both this website (lmpv.amolf.nl/SQ) and the following article:
Photovoltaic materials – present efficiencies and future challenges
A. Polman, M. Knight, E.G. Garnett, B. Ehrler, and W.C. Sinke, Science 352, 307 (2016). DOI: 10.1126/science.aad4424.
Download all figures with 600 dpi resolution HERE
Efficiencies relative to Shockley-Queisser
Fraction of the Shockley-Queisser detailed-balance limit (black line) achieved by record-efficiency cells, gray lines showing 75% and 50% of the limit.
Optical and electrical fractions
The current ratio j = Jsc/ JSQ plotted versus the product of the voltage and fill factor fractions (v x f = FF Voc / FFSQ VSQ) for record-efficiency cells. The lines around some data points correspond to a range of band gaps taken in the S-Q calculations according to uncertainty in the band gap of the record cell.
Current, voltage, and FF
Single-junction solar cell parameters are shown as a function of band gap energy according to the Shockley-Queisser limit (solid lines) and experimental values for record-efficiency cells. Panel 1: Short-circuit current Jsc. Panel 2: Open-circuit voltage Voc. The voltage corresponding to the band gap is shown for reference, with the voltage gap Vg–VSQ indicated by the gray shaded region. Panel 3: Fill factor FF = (JmpVmp)/(VocJsc). All data are for standard AM1.5 illumination at 1000 W/m2.
Optical and electrical fractions for selected tandem solar cells
The current ratio j = Jsc/ JSQ plotted versus the product of the voltage and fill factor fractions (v x f = FF Voc / FFSQ VSQ) for record-efficiency cells. The labels correspond to the top//bottom subcell materials of the tandem cell.
References for record-efficiency cells in the updated figures
Crystalline silicon
- Performance parameters (efficiency 26.7%) (updated September 2017):
Solar cell efficiency tables (version 50)
M. A. Green et al., Prog. Photovolt: Res. Appl. 25, 668-676 (2017). - Cell fabrication:
New World Record Established for Conversion Efficiency in a Crystalline Silicon Solar Cell
Kaneka News Release (25 August 2017).
Multicrystalline silicon
- Performance parameters (efficiency 23.8%) (updated July 2020):
Solar cell efficiency tables (version 56)
M. A. Green et al., Prog. Photovolt: Res. Appl. 28, 629– 638 (2020). - Cell fabrication
CANADIAN SOLAR SETS A 23.81% CONVERSION EFFICIENCY WORLD RECORD FOR N-TYPE LARGE AREA MULTI-CRYSTALLINE SILICON SOLAR CELL
GUELPH, Ontario, Mar. 06, 2020 /PRNewswire/Canadian Solar Inc.
Amorphous silicon
- Performance parameters (efficiency 10.2%) (original, April 2016):
Solar cell efficiency tables (version 45)
M. A. Green et al., Prog. Photovolt: Res. Appl. 23, 1-9 (2014). - Cell fabrication:
Development of Highly Stable and Efficient Amorphous Silicon Based Solar Cells
T. Matsui et al., Proc. 28th European Photovoltaic Solar Energy Conference, 2213–2217 (2013).
Nanocrystalline silicon
- Performance parameters (efficiency 11.9%) (updated September 2017):
Solar cell efficiency tables (version 50)
M. A. Green et al., Prog. Photovolt: Res. Appl. 25, 668-676 (2017). - Cell fabrication:
High-efficiency microcrystalline silicon solar cells on honeycomb textured substrates grown with high-rate VHF plasma-enhanced chemical vapor deposition
H. Sai et al., Jpn. J. Appl. Phys. 54, 08KB05 (2015).
GaAs
- Performance parameters (efficiency 29.1%) (updated June 2019):
Solar cell efficiency tables (version 53)
M. A. Green et al., Prog. Photovolt: Res. Appl. 27, 3-12 (2019). - Cell fabrication:
Highly efficient GaAs solar cells by limiting light emission angle
E. D. Kosten et al., Light Sci. Appl. 2, e45 (2013).
InP
- Performance parameters (efficiency 24.2%) (updated September 2017):
Solar cell efficiency tables (version 50)
M. A. Green et al., Prog. Photovolt: Res. Appl. 25, 668-676 (2017). - Cell fabrication:
Advanced Ultra High Performance InP Solar Cells
NREL Technology (23 June 2016).
GaInP
- Performance parameters (efficiency 22.0%) (updated October 2019):
Solar cell efficiency tables (version 54)
M. A. Green et al., Prog. Photovolt: Res. Appl. 27, 565-575 (2019). - Cell fabrication:
NREL, private communication, 22 May 2019. (according to M. A. Green et al., Prog. Photovolt: Res. Appl. 27, 565-575 (2019))
CdTe
- Performance parameters (efficiency 21.5%) (updated February 2017):
Solar cell efficiency tables (version 46)
M. A. Green et al., Prog. Photovolt: Res. Appl. 23, 805–812 (2015). - Cell fabrication:
First Solar raises bar for CdTe with 21.5% efficiency record
PV Magazine (6 February 2015). - Highest reported record (efficiency 22.1%) (not updated due to lack of specific bandgap):
First Solar Achieves Yet Another Cell Conversion Efficiency World Record
First Solar Press Release (23 February 2016).
CIGS
- Performance parameters (efficiency 23.4%) (updated October 2019):
Solar cell efficiency tables (version 54)
M. A. Green et al., Prog. Photovolt: Res. Appl. 27, 565-575 (2019). - Cell fabrication:
Solar Frontier Achieves World Record Thin-Film Solar Cell
Efficiency of 23.35%
Solar Frontier Press Release (17 January 2019).
CZTS
- Performance parameters and cell fabrication (efficiency 12.6%) (original, April 2016):
Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency
W. Wang et al., Adv. Energy Mater. 4, 1301465 (2014).
Dye/TiO2
- Performance parameters (efficiency 12.25%) (updated April 2020):
Solar cell efficiency tables (version 55)
M. A. Green et al., Prog. Photovolt: Res. Appl. 28, 3-15 (2020). - Cell fabrication:
No specifics were stated/found
Organic
- Performance parameters (efficiency 18.2%) (updated December 2020):
Solar cell efficiency tables (version 57)
M. A. Green et al., Prog. Photovolt. Res. Appl. 28, 1-13 (2020).
Quantum-dots
- Performance parameters and cell fabrication (efficiency 16.6%) (updated July 2020):
Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1−xFAxPbI3 quantum dot solar cells with reduced phase segregation
Hao, M., Bai, Y., Zeiske, S. et al., Nat. Energy 5, 79–88 (2020).
Perovskite
- Performance parameters (efficiency 25.5%) (updated December 2020):
Solar cell efficiency tables (version 57)
M. A. Green et al., Prog. Photovolt. Res. Appl. 28, 1-13 (2020). - Cell fabrication:
Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss
M. Jeong et al., Science 369, 1615 (2020).
Antimony Selenosulfide (SbSSe)
- Performance parameters and cell fabrication (efficiency 10.10%) (included July 2020):
Hydrothermal deposition of antimony selenosulfide thin films enables solar cells with 10% efficiency
R. Tang, X. Wang, W. Lian et al., Nat. Energy (2020).
Tandem Solar Cells
Perovskite – Silicon
- Performance parameters (efficiency 29.15%) (included July 2020):
Solar cell efficiency tables (version 57)
A. Green et al., Prog. Photovolt. Res. Appl. 28, 1-13 (2020).
Perovskite – CIGS
- Performance parameters (efficiency 24.2%) (included July 2020):
Solar cell efficiency tables (version 57)
A. Green et al., Prog. Photovolt. Res. Appl. 28, 1-13 (2020).
Perovskite – Perovskite
- Performance parameters (efficiency 24.4%) (included July 2020):
Solar cell efficiency tables (version 57)
A. Green et al., Prog. Photovolt. Res. Appl. 28, 1-13 (2020). - Cell fabrication:
Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(II) oxidation in precursor ink
Linet al., Nat. Energy 4, 864 (2020).
GaAsP – Si
- Performance parameters (efficiency 23.4%) (included July 2020):
Solar cell efficiency tables (version 57)
A. Green et al., Prog. Photovolt. Res. Appl. 28, 1-13 (2020). - Cell fabrication:
GaAs75P0.25/Si Dual-Junction Solar Cells Grown by MBE and MOCVD
T. Grassman, IEEE Journal of Photovoltaics 6, 326 (2020).
GaInP – GaAs
- Performance parameters (efficiency 32.8%) (included July 2020):
Solar cell efficiency tables (version 57)
A. Green et al., Prog. Photovolt. Res. Appl. 28, 1-13 (2020).