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ABSTRACT Nanophotonics has become very important in the development of third generation solar cells, based on

high-efficiency thin-film technology. Nanowires may enable this because of their radial geometry and because they support

resonances. Recent research suggested that a metal nanowire with an extremely thin semiconductor shell could further

improve efficiency; it theoretically predicted an increase in both the absorption per resonance and the number of effective

resonances in this coaxial geometry. Also, the metallic core could act as an electrode for a local contact. This project was

aimed at verifying this theory, by answering the following research question: What are the resonances in scattering spectra

of Cu@Cu2O core@shell nanowires of different core-shell dimensions, and how does this compare to theory? Therefore

Cu@Cu2O core@shell nanowires were synthesized in aqueous solution at room temperature and the dimensions were

analyzed by using transmission electron microscopy (nanowire core diameters 39-124nm, average 67.3nm; shell thicknesses

25-41nm, average 34nm) The scattering spectra were obtained using cathodoluminescence (CL) spectroscopy on seven

Cu@Cu2O nanowires. Two of the seven wires that were measured showed a narrow wavelength peak between 650-660nm,

close to theory. These two wires had a relatively large core (diameter: 80nm and 124nm). The other wires showed broad

resonance peaks. This difference could be explained by theory: in a relatively large core (�50nm) scattering exceeds

absorption, giving a clear response. In a smaller core scattering gets damped. Although some resonance peaks matched

with theory, other peaks that were predicted did not appear experimentally. Scanning electron microscope images showed

rough wire-surfaces that probably extinguished photonic modes, leaving only the plasmonic resonances visible. Also,

asymmetric line scan profiles indicated carbon deposition on the samples which could have affected responses. Future

research will use different equipment to allow for both optical excitation and detection of resonant modes, which can

provide additional information about these characteristics. Finding the optimal nanowire material and dimensions could

lead to the discovery of ideal building blocks for highly efficient solar cells.
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Chapter 1

Introduction

The field of nanophotonics plays a critical role in the development of so-called ‘third generation solar-
cells’ [1]. The fundamental feature of these nanoscale solar cells is that their sizes are similar to or
even smaller than the wavelength of light, so that light can be trapped which can dramatically increase
their efficiencies compared to other generation solar cells. Research on third generation cells is mainly
focused on high-efficiency thin-film technology, with the aim of combining these high-efficiencies with
drastically reduced material and fabrication costs, so that these cells can match up in the competition
with fossil fuel techniques in becoming a cost-efficient source of energy[1]. Until recently, thin-film solar
cells have had limited efficiencies because the absorption of light near the band gap is small or the carrier
diffusion length too short[2]. Therefore current research aims to enhance light absorption within thin
films by nanostructuring the solar cell for better light confinement. The radial geometry of nanowires
has been of great interest because of its benefits in reducing absorption losses and enabling rapid charge
separation and efficient carrier collection [3]. Metal nanostructures are beneficial because they support
‘localized surface plasmons’: oscillations of excited, conduction band electrons in nanoscale materials. By
properly engineering the dimensions of a metal nanowire and coating it with a semiconductor shell as the
photovoltaic active layer, incident light can couple to either the plasmon modes of the metal core or to the
photonic modes of the semiconductor shell, resulting in a resonance that can enhance the probability of
photon absorption [4]. Such core@shell nanowires show great promise because they can possibly be mass
produced via bottom-up synthesis, both the dimensions of the core and the shell can be tuned to absorb
at wavelengths corresponding to the sun’s spectrum and semiconductor band-gap, and the metal core can
act as a high-performance transparent electrode for local contacts. Overall, this coaxial geometry could
be an ideal building block for high-efficiency solar cells.

Just recently, an analytical model that describes light trapping in single metallic nanowires covered
with an extreme thin semiconductor layer has been published[4]. This theory demonstrated that it is
possible to maximize absorption in a core@shell nanowire, by tuning the sizes of both the metal core and
the semiconductor shell to 1) ensure maximal absorption in each resonance mode and 2) increase the
total number of degenerate resonances. This theory could be applied to core@shell nanowires composed
of different types of metal cores and semiconductor shells[4].

The aim of this research was to experimentally verify this theory. Analytical models were set up
beforehand, and have been used as a reference for both the theoretical framework (see Section 2) and the
experimental research in this project (see Section 3). The theory has been applied to copper nanowires
covered with cuprous oxide as the semiconductor layer. The main research question was: what are the
resonances in the scattering spectrum of Cu@Cu2O core@shell nanowires of different dimensions, and
how does this compare to theory?

In this research, Cu@Cu2O nanowires were synthesized in aqueous solution at room temperature.
These single nanowires (nanowire core diameters 39-124nm, average 67.3nm; shell thicknesses 25-41nm,
average 34nm) were then measured using cathodoluminescence (CL) spectroscopy. Details on the CL
measurements and data analysis can be found in Section 3. The experimental results were then compared
to theory, leading to insights into resonances in core@shell nanowires. Discussion on the results and
suggestions for further research are introduced in Section 5. Because the science of light interactions with
nanowires is an advanced topic, the coming chapter will not only focus on the analytical model, but also
give a theoretical framework on how light can be converted into electricity within these types of solar
cells.



Chapter 2

Theoretical Framework

The experimental work done for this project was based on theoretical predictions. This chapter will
focus on the theory required to understand the basic concepts of nanowires as new types of building
blocks for solar cells, on understanding why core@shell nanowires can increase photovoltaic efficiency, and
understanding how cathodoluminescence measurements help in confirming this theory experimentally.

2.1 Nanowires for resonance-enhanced photovoltaics

The conversion of light to electricity in a solar cell can be divided into four steps: photon absorption,
exciton creation, exciton separation to free carriers and carrier collection by the electrodes [3]. When an
incident photon gets absorbed by a semiconductor, it excites an electron from its valence band leaving
behind a ‘hole’: an electron-hole pair (an exciton) is formed. This exciton could then recombine and
dissipate heat or release a photon, or this exciton could get dissociated. In a solar cell the latter is
strongly desired because to generate power these charge carriers (electrons and holes) must be able to
‘travel’ through the semiconductor in opposite directions and get collected by the electrodes. The main
challenge in photovolotaic research is to create a system that makes optimal use of the incident photons[5].

The use of nanowires as building blocks for solar cells has been recommended, because their nanoscale
radial geometry can reduce losses in all conversion steps mentioned above[3]. The first step -reduce losses
in photon absorption - is of importance to the theory discussed in this research. An approach to minimize
absorption loss, is to to increase the absorption efficiency ηabs (the maximum amount of photons that
can be absorbed and thus excite electrons) by making sure the photons stay in the system long enough
to increase the absorption possibility. This can be achieved by creating a resonance: the light (energy)
gets temporally stored in the system in for example a whispering gallery mode. A second method for
increasing absorption has already briefly been mentioned in the Introduction (Section 1): by enclosing a
metallic structure in a semiconductor, light can excite localized surface plasmons (LSPs)1, with high field
intensity outside the metal structure, thereby increasing the absorption probability in the semiconductor.
The plasmon resonance depends strongly on the intrinsic optical properties and the geometry of the used
material(s) [2]. These electron oscillations produce a dipolar field outside the material, which leads to an
enhanced absorption and scattering cross section for electromagnetic waves, and also a strongly enhanced
electric near field around the metal[6].

2.2 Absorption efficiencies and resonance

Depending on the dimensions and the material of a system, it will interact with a certain amount of power
from the incoming energy: σext, the extinction cross section. The total extinction consists of scattered
and absorbed power: σext = σsca +σabs. A specific maximum amount of energy can be absorbed, related
to the maximum absorption efficiency ηabs:

ηabs =
σabs
σgeo

(2.1)

1A surface plasmon is a bound electromagnetic wave at a metal dielectric interface, due to coherent electron oscillations
in the metal which decays exponentially perpendicular from the surface[6].
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where σabs is the absorption cross section, and σgeo the geometrical cross section. Note that σabs can be
bigger than σgeo due to the ‘antenna effect’. This σabs is a general definition of what happens when light
interacts with a material: it actually describes the amount of power that gets absorbed, related to the
amount of power that comes in at the material -or say the effective area that governs the probability of
absorption - and is therefore important in describing the optical characteristics of nanowires. Both the
ηsca and the ηext can be formulated likewise; σsca

σgeo
and σext

σgeo
, respectively.

The cross sections σ are highest at specific wavelengths, which correspond to so called resonances,
and depend on either the material of the wire or the sizes of the wire. Also different resonances can
occur in a wire at different wavelengths. Figure 2.1 shows a graph of scattering efficiencies of two solid
semiconductor nanowires of different diameters, plotted against wavelength. Here you can clearly see
resonance peaks at a wavelength depending on wire material and diameter.

Figure 2.1: Scattering efficiency of a solid nanowire with refractive index n=3 plotted against
wavelength. Comparison of two different resonant modes (TE11 with TE01) with differences
in nanowire diameter (120 and 140nm). Different resonance modes clearly relate to different
resonance-wavelengths, and changing the size of the diameter also shifts the scattering profile[4].

Dielectric structures support resonances, based on morphology. These resonances are better to under-
stand from the concept of leaky mode resonances (LMRs)[7]. Leaky modes were once defined as modes
with propagating electromagnetic fields outside the structure as opposed to guided modes, which have
an exponentially decaying field outside the structure and thus have energy moving away. So LMRs are
resonant modes that can couple to incident light, and so to say became leaky because of the small size of
the nanowire. This led to interaction with the outside world and in this case the electromagnetic field of
incoming (sun)light. For wavelengths close to these leaky modes, the nanowires act as cylindrical cavity
that confines this radiation (see Figure 2.2 (a)). This can also be related to the antenna effect, in which
a near-field couples to a material and increases the area in which photon absorption is probable [8] [7].
These LMRs that correspond to peaks in scattering and absorption spectra of nanowires will from now
on be better defined in terms of TMml or TEml. Under normal incidence of light, the polarization of this
electric field distribution relative to the wire defines the modes: TE (transverse electric; the electric field
is oriented perpendicularly to the nanowire axis) or TM (transverse magnetic; electric field is oriented
along the nanowire axis) modes. The m refers to the angular nodes in the field distribution and for exam-
ple m=2 means that a specific wavelength can roughly resonate around a wire twice. The l corresponds
to the number of radial field maxima that exist in a material.

For example: by implementing the dielectric functions of some semiconductor in the analytical model
and choosing a radius, the expected scattering for that specific wire in TE polarisation for m=0 and
m=1 can be calculated and plotted exactly, to find resonances. Also, by calculating multiple resonances
for different modes and polarisations and adding these, the total expected scattering can be plotted.
The m=0 mode is angle-independent and thus only occurs once in a wire, whereas the m ≥1 modes
can resonate both clockwise as well as counterclockwise. It makes sense to calculate total scattering by
adding one m=0 mode with twice the m ≥1 mode. These expected resonances can also be plotted in
terms of a electric field intensities (see Figure 2.2 (b,c)).
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Figure 2.2: a) When wavelengths of incident radiation match the leaky modes of the material, a
nanowires can act as a cylindrical cavity that confines this radiation inside. Some light can leak out
and interact with the surroundings. b), c) Two typical examples of different resonances that can
occur in a nanowire, in terms of electric field intensity plots (blue circle indicates nanowire/air in-
terface), with the red color corresponding to a high electrical field intensity. These plots correspond
to a TM11 (b) and a TM21 (c) mode[7].

To calculate these scattering and absorption properties of nanowires, one needs the cross section σ.
This could be calculated after knowing the electric field distributions of the regions in the wire, which
were studied using Mie theory- one of the most prominent theories for analyzing the optical properties of
spherical and cylindrical shaped systems. By using the Maxwell equations applied to an infinitely long
cylinder, one could calculate modes that correspond to leaky modes: the TEml and TMml [7]. Solving
the boundary conditions to the Maxwell equations led to a system of equations needed to calculate the
Mie coefficients, that could be used to eventually set up an expression for the total amount of absorption
in a wire [9][4]:

ηTEabs =

∞∑
m=−∞

ηTEabs,m =

∞∑
m=−∞

(ηTEext,m − ηTEsca,m) (2.2)

These definitions were here defined in TE polarization. These efficiencies are defined as follows:

ηTEsca =

∞∑
m=−∞

ηTEsca,m =

∞∑
m=−∞

2

n0k0rout
|am|2 (2.3)

ηTEext =

∞∑
m=−∞

ηTEext,m =

∞∑
m=−∞

2

n0k0rout
Re(am)2 (2.4)

With n0 the refractive index of the medium (in this case the nanowire), k0 the free space wavenumber,
rout the outer radius of the wire, m the angular mode of the wave equation and am the Mie coefficient[4].
The calculations show that the resonances can be calculated per fixed radius of the cylinder, which led
to the conclusion that changing the diameter of the wire affects the resonant wavelength [8].

The absorption cross section σabs is defined ad follows[4]:

σabs =
2λ

π

γeγi
(ω − ω0)2 + (γe + γi)2

(2.5)

This σabs changes at different diameter/wavelength combinations, which define a wavelength where
there is resonance. The maximum amount of absorption is limited by the value λ\2π. This value is
reached when critical coupling arises; the radiative loss rate γe equals the absorption loss rate γi of the
resonator (γe=γi), at resonance frequency (ω=ω0) and the following formula is satisfied[4]

σabs,max =
λ

2π
(2.6)
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The above information was needed to understand how nanowires can act as a resonance-enhanced
photovoltaic. Now it is time to turn to the theoretical predictions on core@shell nanowires. Next section
will show that using a metal core in the radial geometry not only supports whispering gallery modes, but
that a semiconductor shell also introduces Fabry-Pèrot resonances.

2.3 Analytical Predictions Core-Shell Nanowires

The previous section discussed some requirements on how to increase absorption in a nanowire. Reso-
nances are the key principles in achieving this, and by ensuring these are critically coupled one can even
maximize absorption of each individual resonance. By wrapping a semiconductor layer around a metal
nanowire and creating a core@shell nanowire, even higher efficiency can be achieved. The analytical
model that supports this theory showed how to increase the total number of degenerate resonances. In
contrast to theoretical studies that have been done before, this model focused on how the wires’ thick-
nesses determined the interaction with incoming light [7][10]. This gave new insight about additional
resonances that came from the specific configuration, which lead to a proposition for more efficient ab-
sorption by using extremely thin semiconductor shells. Written below will follow a recapitulation of this
theory, with supporting information needed to understand the aspects of the measurements done on the
wires[4].

Previous research on core@shell nanowires showed that wrapping a semiconductor layer around a cylin-
drical shape would perturb polarization-dependent Mie modes which would transform to polarization-
independent Fabry-Pèrot (FP) like resonances. The condition that then must be satisfied is

a >
b

n
(2.7)

where a is the inner diameter of the core, b is the outer radius, and n is the refractive index of the shell
[11]. By extending the Mie theory for cylinders to core-shell nanowires, and taking into account condition
(2.7), this addition of FP resonances made it possible for distinct LMRs to add up linearly, and cause
the absorption peak to be higher (see Figure 2.3)[4].

Figure 2.3: Comparison between a solid a-Si nanowire of a 110nm (left) and a 88nm silver core
diameter with a 18nm a-Si shell (right); in the latter adding up resonances achieved higher efficiency
[4]

.

Under normal incidence, FP resonances are insensitive to polarization. So this core@shell geometry
introduces more resonances in both polarizations (see Figure 2.4).

Overall, this model shows that there is a strong relation between core and shell thickness and the
resonance peaks in the wires. For every material a different optimal core and shell thickness exists,
which can be found after implementing the dielectric constants of the used material [12]. These different
optimal dimensions of a material are due to the differences in band gap energy and refractive index,
but for all a relatively bigger core would be of most interest because in this case the transformation to
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FP resonances occurs. The combination of those specific dimensions led to the paradoxical conclusion
that for most resonances the absorption in the semiconductor increased when the absorption coefficient
decreased; when it is critically coupled. Also extreme absorption could be demonstrated by increasing
the total number of degenerate resonances. This maximization of absorption in a structure that is less
polarization dependent is showed to be an ideal building block for solar cells[4].

Figure 2.4: a) Schematic representation of different orientations of the incoming electromagnetic
field with different wavelengths, resulting in resonances that can occur in the core-shell nanowire[4]
b) Schematic representation of Mie-like modes compared to c) Fabry-Pèrot-like resonance modes.



Chapter 3

Methods and Experimental Setup

In this Section the development of a method to synthesize shells around metal nanowires will be discussed.
Because the concept of synthesizing shells around metal nanowires in solution is quite new, it has so far
not been possible to exactly tune the dimensions of the core-shell wires. Therefore before performing
CL-spectroscopy, the dimensions of the synthesized wires were first analyzed using transmission electron
microscopy (TEM). In the next subdivisions these steps will be discussed in further detail, followed by
the actual method of measuring optical responses with CL.

3.1 Sample Preparation

3.1.1 Cu@Cu2O Core@Shell Nanowire Synthesis

The shell synthesis was partially based on a synthesis done on silver nanoparticles [13]. By adding
reagents to copper nanowires (CuNW) in aqueous solution at room temperature, the surface of the wires
would react and thus chemically grow a Cu2O shell around the wire. The hypothesis was that different
amounts of chemical precursor injections would result in different thicknesses of Cu2O shells.

Four samples were made, with different amounts of components, labeled sample C1, C2, C3 and C4.
The CuNW in stock (1mg/ml) came from NanoForge, the other components from Sigma-Aldrich. For all
four samples, the next procedure was followed:

- Put 8.5 mL of DI water in a vial

- add 300 µL of CuNW in stock

- add 66 µL of 0.1M sodium citrate

- add 160µL of 20mM CuSO4, then shake

- add 660 µL of 0.1M ascorbic acid

- add 90 µL of 1.0M NaOH, immediately shake

- put away for at least 30 minutes to have a reaction occur

Which led to a chemical reaction;

2Cu2+ + 2OH− + C6H8O6 ⇒ Cu2O +H2O + C6H6O6 (3.1)

With C6H8O6 ascorbic acid and C6H6O6 dehydroascorbic acid. The other components acted as coordi-
nating ligands.

All the samples were bright and salmon colored; probably affected by addition of the copper-colored
CuNW in DI water. After 30 minutes, in samples C2, C3 and C4 extra injections were added, as follows:

- add 66 µL of 0.1M sodium citrate

- add 160µL of 20mM CuSO4, then shake
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- add 660 µL of 0.1M ascorbic acid

- add 90 µL of 1.0M NaOH, immediately shake

- put away for at least 30 minutes to have a reaction occur

Sample C1 was now darker compared to the other three samples. After 30 minutes, samples C3 and
C4 got an extra injection, same as before. Vials were shaken, then put away for 30 minutes. Samples
C3 and C4 were clearly more orange than C1 and C2. C1 was still darkest (see Figure 3.1). After 30
minutes only C4 would get an extra injection as mentioned before, and after 30 minutes this sample was
the lightest of four. These differences in color can be explained by the extra injections which made the
samples more diluted. Also these extra injections could have resulted in the formation of nanoparticles,
which have different properties in light absorption/scattering than nanowires.

45 minutes after the last injection, all four samples were cleaned; the precipitates were separated from
the solution by centrifuging at 2000 rpm for 6 minutes and then 3000 rpm for 4 min. After cleaning with
ethanol, the samples were centrifuged again at 3000 rpm for 4 min. They were then redispersed with
ethanol and dropcasted on TEM grids 1.

Figure 3.1: Cu@Cu2O nanowires in solution; named Cx, with ’x’ standing for number of injection
of Cu2SO4 added to the copper nanowire solution. Four samples after cleaning, from left to right
C1, C2, C3, C4.

3.1.2 Transmission Electron Microscopy

To obtain the dimensions of the cores and the shells of the synthesized wires, respectively, transmission
electron microscopy (TEM) was performed. TEM made it possible to ‘look’ through the sample to check
whether the shell-synthesis actually worked, and to make images of specific wires to acquire the core-shell
dimensions. This TEM was done at the University of Utrecht with a Tecnai 20 FEG 2.

TEM is a microscopy technique that is used to study small details of materials down to near atomic
levels. With TEM, a beam of electrons gets transmitted through a sample and detected on a substrate.
This forms an ‘image’ on the substrate which then gets focused at a detector that is able to magnify the
image. A modern TEM is composed of an illumination system as the source of the beam, a specimen stage,
an objective lens system, a magnification system, data recording systems, and an analysis system. The
TEM used in this project was equipped with a Schottky field emitter, capable of and unique for performing
high coherence lattice imaging, electron holography, and high spatial resolution microanalysis[14]. This
TEM was also capable of focusing the electron beam into a narrow spot which was scanned over the
sample for mapping samples (also called scanning tranmission electron microscopy (STEM)). By using
an annular dark-field detector for this mapping -a method of collecting electrons from an annulus around
the beam - an image got formed only by the most high angle scattered electrons: high-angle annular
dark-field imaging (HAADF). This is also called Z-contrast imaging because of the enhanced scattering
from high atomic number atoms. It gives even more precise images of the nanowires.

All four samples C1, C2, C3 and C4 were analyzed with TEM, and per sample an appropriate grid
was chosen and the wires on this grid were then labelled ’wire1’, ’wire2’, ’wire3’, ... (see Figure 3.2).

101800N-F Formvar/Carbon 200 mesh, Nickel, approximate grid hole size: 97µm. Ted Pella inc. c©
2See EMU: Electron Microscopy Utrecht. http : //www.electronmicroscopy.nl/facility/facility.html
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Figure 3.2: Three images of sample C3 grid1, zoomed in until you can clearly see a shell around
nanowire 1. Red numbers and lines are added to clarify the position of the mentioned wires, and
position of zooming.

3.1.3 Image Analysis

The TEM, STEM and HAADF images acquired were equipped with a scale-bar. All these images were
then analyzed to obtain the actual seizes of the core diameter and total diameter of each wire. In some
cases, multiple images were taken from the same wire at different spots, so analyzing different images
would obtain a possible error in this Image Analysis (see Figure 3.2, third image for TEM).

3.2 CL-measurements

Cathodoluminiscence (CL) spectroscopy is a method capable of measuring optical responses in dielec-
tric photonic crystals and nanostructured photonic materials with nanometer-scale resolution. The term
‘cathodoluminescence’ refers to photonic emission (luminescence) as a result of electron beam irradiation
(cathode-ray = electron beam). The basic concept of CL-measurements originates from the coupling of
a high-energy electron’s electric field to the local modes of a photonic structure, which leads to emission
that can be detected[15]. This emission is directly linked to the local density of optical states (LDOS) of
the material at which the e-beam is aimed. By scanning a tightly focused electron beam over the surface
of a sample, the incident electron and it’s image charge together form a dipole, which couples to the
modes of the structure, giving an insight in the available resonances [16] [15]. By collecting the generated
emitted light spectrum at every beam position, a 2D map of the photonic material’s LDOS was made,
which gave an insight in the resonances of the nanowires.

Figure 3.3: a) Image of the line scan done on a core-shell nanowire. The red line indicates the
length and direction of the electron beam over the nanowire. This could either be from left to
right or right to left. b) Schematic representation of excitation processes triggered in a sample by
an electron beam. The beam can launch propagating SPPs or produce LSPs in particles which
could couple to radiation (1). Electronic excitations or excitons in the sample can decay back to
the initial state [coherent CL emission (2)] or to a different excited state [incoherent CL emission
(3)][16].

The CL measurements were performed using a field emission scanning electron microscope extended
with a modified Gatan ParaCL cathodoluminescence system (see Figure 3.4).The electron beam operated
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at 5, 20 and 30 keV, respectively, depending on the particular measurement. It’s spot-size had a diameter
of several nanometers. At first, the setup without lens and flip mirror and with a CCD camera was used
to align the the electron beam with the focal point of the mirror to have it focused on the sample. The
sample (TEM grid) was placed on a stage at a working distance of about 13.6(2) mm between pole
piece and the sample, and at a distance of about 0.5 mm between the mirror and it’s focal point. After
aligning the setup, the lens and the flip mirror were put back in position to collect counts (CL-intensity)
in the spectrometer. The spectral resolution was about 5nm, the grating used 650 nm which means
that the system is sensitive for the wavelengths 360-940 with a resolution of the spectrometer of 1.7 nm,
and adjusted to the numerical aperture of the fiber, which is about 5 nm total spectral resolution. The
data will then get collected with an integration time of 1, 2 or 4 seconds, respectively, depending on the
measurement.

Figure 3.4: Schematic display of the CL setup (not to scale). An electron beam on a sample causes
photonic emission that is collected by a parabolic mirror. The CCD camera can be used to directly
monitor the alignment of the mirror or to measure the angular emission patterns. Alternately, a
flip mirror can be used to guide the light into a spectrometer and measure the intensity of the
emission spectrum[15].

Only the spectrometer was used in the CL measurements. CCD is mostly used for angle-resolved
measurements. Before every measurement, a drift correction was executed, which made sure the position
of the e-beam couldn’t change relatively to the wire while scanning. The electron beam would move along
a straight line perpendicular to the length of the wire, as can be seen in Figure 3.3 a).

3.3 Data Analysis

The data was analyzed using a Matlab code pre-written at the AMOLF institute3. This code corrects
the raw data taking into account calibrations and system losses of the specific parts of the used setup,
based on their system responses. For example: the detector is less sensitive for certain wavelengths in the
blue because of certain losses in both the mirrors and lens of the system and because of the sensitivity
of the grating of the spectrograph. Also, by averaging over multiple background spectra, it minimizes
noise. Both references for dark data and references on the substrate were performed. Averaging over
pixels, the use of conversion lists (grating position, grating) and normalization of the whole response to
1 eventually gave a data-set that could be used to plot the results in terms of wavelengths. This gave
a SEM Line Scan which shows the SE (secondary electron) intensity plotted against the scan position
in nm. Another graph showed the CL Intensity (in arbitrary units-because of the corrections) of the
response plotted against the wavelength.

3FOM-Institute for Atomic and Molecular Physics (AMOLF). Amsterdam, The Netherlands
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Theoretical and Experimental
Results

An over- and review of the most relevant results of both the experimental work and the theoretical
predictions will be outlined in this section. These results are then compared and discussed in some detail.
The next section will discuss the project as a whole, by focusing on the most interesting outcomes.

4.1 Wire Analysis

After the image analysis, the following dimensions of the core@shell nanowires were found in the four
different samples: C1 contained nanowires with dimensions ranging from core diameters of 39-124nm
(average: 67.3nm) and shell-thicknesses ranging from 29-41nm (average 34nm). C2 wires had core di-
ameters of 41-160nm (average 76.8nm) and shells 19-48nm (average 34.4). C3: core diameter 28-161nm
(average 70.4nm), shells 51-79nm (average 66.6nm). C4: core diameter 39-80nm (average 60.8), shells
35-79nm (average 58.4nm). More nanoparticles were found in the samples with extra chemical precursor
injections. It seemed that these extra injections led to thicker cores, though no obvious conclusion could
be drawn. Up to six wires per sample were analyzed, so if there was a difference in dimensions because
of the various reactions, this analysis couldn’t state this. Therefore there was no preference which of the
four samples was used for CL-measurements.

Sample C1 grid1 had been analyzed. The measurements were done on wires 1 to 6 (see Figure 4.1),
which had the dimensions showed in Table 4.1. (Another measurement was done on a random wire,
which was called wire 7.) Figure 4.1 shows an image with an overview and position of the nanowires.

Sample name �core (nm) error(nm) shell thickness (nm) error(nm)
C1-grid1-wire1 39 2 34 3
C1-grid1-wire2-STEM1-HAADF 68 1 29 1
C1-grid1-wire3-STEM1-HAADF 80 1 38 1
C1-grid1-wire4-STEM1-HAADF 39 1 29 3
C1-grid1-wire5-STEM1-HAADF 54 2 41 1
C1-grid1-wire6-STEM1-HAADF 124 2 33 2

Table 4.1: List of thicknesses of nanowires 1 to 6 in sample C1 grid1. The error was based on
the inaccuracy of the image analysis and the difference in shell thickness left and right of the core.
The sample name indicates whether a STEM and or HAADF imaging was performed.

After analyzing the CL-data in Matlab and comparing the outcomes per electron beam-voltage and
integration time, two significant connections between measurements were discovered. These will be further
explained in the next subsections, and compared to theory. The resonant peaks that could be calculated
with the theory don’t change significantly by altering a couple of nanometers of the core diameter and
the shell thickness, respectively. Therefore the error listed in Table 4.1 was not taken into account in the
calculation of the theoretical predictions and in the comparison with the experimental results.
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Figure 4.1: Image of C1 grid1, with the labeled nanowires indicated by red numbers.

4.2 Resonances found

The CL-data produced two graphs; one was a ‘SEM line scan’ divided in five sections by five colored lines
(see Figure 4.2 and 4.3). The red line indicates the number of counts at the point where the electron
beam starts to scan over the edge of the wire. Note that at this point, the electron beam is incident at
only the shell of the wire. The brown line indicates the point where core starts to get into account. The
green line matches the point right above the center of the wire, the grey line conforms the brown one but
then on the other side of the wire, as well as the blue line which conforms with the red line. The second
graph, the ‘CL counts Line Scan’, shows which wavelength corresponds to a higher intensity number of
detected CL. The number of counts in the CL counts Line Scan is in arbitrary units, as these counts have
been subject to a lot of corrections in the Matlab code.

Figure 4.2: Schematic figure of the line scan performed by the electron beam during CL-
measurements, with the different positions on the wire indicated by different colors. These colored
lines match the colors in the collected line scan images.

The theoretical scattering spectra predicted multiple resonances. Hence wire 3 and 6 jumped out, as
their experimental data too showed narrow peaks at a well defined wavelength, as seen in Figure 4.3.
Both wire 3 and wire 6 show a clear peak at 660nm and 650nm, respectively (see Figure 4.3), whereas
wire 3 seems to also show a peak at 890nm, and wire 6 at 940nm. For wire 3, the first peak seems to be
strongest at the point where the core gets hit by the electron beam (brown curve) and for wire 6 both the
intersection of core-shell and the middle point of the wire showed brought forth the most counts. This
could be explained by the core and shell thickness which differs for the two wires.

By comparing the latter to wire 4 for example, one sees a difference between the shape of the peaks
(see Figure 4.4); in the CL graphs of wire 4 no narrow peak can be found. There is a ’bump’ between
650-850nm that could indicate a resonance, but the peak is very broad compared to those in data of
wire 3 and wire 6. The peak is thus less convincing, and redshifted compared to theory (see Figure 4.5).
The same arguments can be applied to the outcomes of wire 2. Wire 1 and wire 5 (see Figures 4.4 and
4.6) show a very broad spectrum with some small peaks. These peaks are not very intense and thus less
convincing also.

An evident correspondence between wires 3 and 6 is that these two have a relatively larger core
compared to the other wires. Also, Figure 4.6 shows the theoretical predictions of wires 3, 5 and 6.
The TE1 mode (red curve) has significant influence on the position of the total resonance peak. The
resonances predicted by the TE0 (blue curve) could not directly be observed in the CL graphs, but the
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high peak seems to agree with the CL outcome. In the predictions on wire 5, the TE0 mode dominates
the intensity resonance peak. One assumption is that this TE0 mode is redshifted, which could explain
the vague bump between 800-950nm for all wires.

Figure 4.3: Comparison of two CL scans at 20keV, 4 seconds integration time. The SEM line scan
shows the scan position divided in five sections, indicated by coloured lines. The CL counts line
scan shows the number of relative counts at specific wavelengths. a) Wire 3 (core diameter 80nm,
shell 38nm), showing a narrow resonance peak at a wavelength of 660nm. b) Wire 6 (core diameter
124nm, shell 33nm), showing a narrow resonance peak at a wavelength of 650nm. c) Scattering
efficiency profile of wire 3 (core diameter 80nm, shell 38nm), calculated by theory. This predicts
resonant peaks at 590nm and 680nm. d) Scattering efficiency profile of wire 6 (core diameter
124nm, shell 33nm), calculated by theory. This predicts resonant peaks at 600nm and 660nm.

Figure 4.4: CL data on wires 1, 2 and 4, all taken at 20 keV 2 seconds integration time. These
CL intensities show bumps that can account for resonances, but are not as convincing as other
data. a) Wire 1 (core diameter 39nm, shell 34nm), showing two peaks that are not intense at
650nm and 780nm. b) Wire 2 (core diameter 68nm, shell 29nm), showing a very broad peak
between 600-850nm. c) Wire 4 (core diameter 39nm, shell 29nm), showing a broad peak between
650-850nm.
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Figure 4.5: Theoretical predictions on wires 1, 2 and 4. The y-axis shows scattering efficiency,
the x-axis wavelength in nm from 450 up to 950nm.

Figure 4.6: a) Wire 5 (core diameter 54nm, shell 41nm), CL at 20keV with an integration time
of 4 seconds. No well defined peaks can be found in the CL counts line scan. At 880nm a higher
CL Intensity is seen. b) Scattering efficiency profile of wire 5, calculated by theory. This predicts
resonance peaks at 570nm (blue curve) and 670nm (red curve).

4.3 Asymmetric SEM Line Scan

For some wires the profile of the SEM line scan was asymmetric (see Figure 4.7). In most cases the left
side of the scan showed a bigger peak than the right, and the 4 seconds integration time showed a bigger
asymmetry than 2 seconds. To see whether this was an effect of the direction of scanning over the wire, a
random wire (wire 7) was chosen and scanned from both left to right as right to left to see the effect (see
Figure 4.8). Both scans on wire 7 showed an asymmetric profile with peaks at the same side -this time on
the right side instead of the left - so the scanning direction was probably not the cause of this asymmetry.
The position of the asymmetric peak coming from the intensity of secondary detected electrons, could
maybe be explained by the position of the wire relative to the detector, or by the structure of the wire
(which was not perfectly symmetric). Another explanation could be deposit on the sample, which could
explain why the 4s integration time gives a higher peak than the 2s: the longer the scan, the more waste
gets burned which deposits on the sample.

The CL data clearly showed narrow resonance peaks for two of the seven wires that were scanned;
wire 3 and wire 6. These resonance peaks were at wavelengths that seemed to agree with theoretical
predictions. For the wires 1,2,4 and 5 only wide peaks were found in the regions between 700-950nm,
which is redshifted in comparison to what theory predicts. All scans showed an asymmetric line profile,
that could be explained by deposit on the sample.

The next section will continue in discussion on the results, as will suggest improvements for further
research.
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Figure 4.7: SE Intensity and CL Intensity of wire 2 (core diameter 68nm, shell 29nm) at 20keV
and an integration time of (a) 2 seconds with an asymmetric line scan profile and (b) 4 seconds
with an even more asymmetric line scan profile. Both a) and b) show no clear resonant peaks; only
a bump at 750nm.

Figure 4.8: Comparison of SEM Line Scan of wire7 (dimensions unknown) from Left to Right (a)
and Right to Left (b). Both show an asymmetric profile with a peak at the right.



Chapter 5

Discussion and Suggestions for
Future Research

In the experimental results did not exactly match theoretical predictions; no multiple resonances have
been found to verify theory, and the resonances that did occur were barely visible except for two wires.
These wires 3 and 6 both showed one narrow peak at a wavelength that was predicted in theory. These
resonance peaks seemed to match the TE1 mode in the calculated scattering profile. The other ‘bumps’
that seemed to show, were very broad and less convincing.

From theory the TE0 mode (blue curves in the theoretical prediction plots, Section 4) describes
photonic modes, whereas TE1(red curves) describes hybrid plasmonic modes. Because the calculations
were based on Mie theory applied to an (infinitely long) perfectly homogeneous cylinder, differences
between theory and experiments exist. The synthesized wires had a rough surface (see Figure 5.2), which
could result in differences between theory and experiments, assuming that this unequal shell causes more
scattering of photonic modes that results in a high radiative loss rate γe, respectively (while γi stays
the same - see Formula 2.2). The rougher the shell, the higher γe and the broader (or more unclear)
the corresponding resonant peak. Note that the surface of the shell can only influence photonic modes;
plasmonic modes are tightly bound to the metal-semiconductor interface and thus not ‘see’ the rough
surface. Assuming that the photonic modes are strongly damped because of the rough surface, one could
expect that there is almost zero interaction between resonances (or hybridization between LSPs and
photonic modes), which was predicted in theory. So ignoring the photonic modes and focusing on the
plasmonic modes, one could refer to classical plasmonic theory to check whether the resonant peaks found
in the experiments match the predicted plasmon resonances. Classical theory also relates redshifting of
a plasmon resonance to the medium around a metal. In the case of core-shell nanowires, a high-index
shell was wrapped around a metal, which according to classical theory results in redshift of resonances,
according to:

Re(εm(λ)) = −εenv (5.1)

With ε the dielectric function of either the medium (m) or the environment/shell (env)[17].
Even though not all results exactly match theory, for two wires a well defined and reasonably explicable

resonant peak was found that actually agreed with what was predicted. Both wire 3 and wire 6 have
a relatively large core which could explain why only these two wires give rise to clear peaks[4]. A
relatively large core (diameter�50nm) supports more scattering, which actually means a higher intensity
of plasmon radiation and relatively less absorption. The bigger the core, the more scattering exceeds
absorption (see Figure 5.1).

This doesn’t mean that no resonances were present in wires 1,2,4 and 5, but that CL wasn’t able to
show these modes. The bumps found in wires 1,2,4 and 5 were broader, which can be explained by the
absorption that exceeds scattering for smaller cores. This absorption could have damped the detected
CL, resulting in a broad resonance peak, and also the lower intensity of the response.

The theoretical calculations could have been performed by using the general theory on core@shell
nanowires, and implementing the Palik dielectric constants[4]. It would be interesting to use other
materials than Cu and Cu2O to see whether those predictions match theory, and to see whether other
materials are better in supporting resonances. Wires used in further research could be synthesized
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Figure 5.1: Comparison of the ηscat and ηabs of two silver nanowires with 20 nm diameter (left)
and 100nm diameter (right). It shows that the nanowire diameter strongly affects the resonances
(scattering or absorption), but does not strongly affect the resonance wavelength[4].

Figure 5.2: STEM image of C1 grid1 wire3, showing the rough surface of the nanowire shell.

differently. The use of other components in solution could maybe create smoother surfaces. Also vertically
growing nanowires gives more control over their dimensions[1].

The fact that both the line scan from left to right and the line scan from right to left showed an
asymmetric profile at opposite directions, can possibly be explained by the fact that scanning an e-beam
over the surface could leave some deposit, which influences the eventual outcome of the scan. Also the
bigger asymmetry in the line scan at higher integration time supports this assumption. The fact that
the symmetric peak was at different position for different wires (sometimes left, sometimes right), could
be explained by the position of the mirror relative to the wire. An attempt has been made to clean the
wires using plasma etcher, but this damaged the sample. Despite difficulties with the plasma cleaning,
future studies must find a method to minimize surface contamination.

Also, there seemed to be some noise in the region <550nm of the CL-data. This could have a relation
with the bandgap of the Cu2O, which is at 2.137eV (→580nm). Electrons with energy below this band
gap cannot excite states, which could explain why the data below this wavelength is unclear. Another
explanation comes from the γ: a higher γe could correlate with not finding any resonances, because
then the absorption exceeds the scattering. If this was the case, it could explain why no peaks could be
detected in a certain wavelength-region.

Future research has some challenges to overcome. Since the electron beam in a CL-setup aims per-
pendicular to the cross-section of the wire, only TE polarization is directly excited. Experiments that
take both light-polarization into account could be very helpful to verify theory, because this includes
verification of the TM polarization. But this requires a different setup. Suggested is to use a laser setup,
because this could be equipped with a polariser. Also a laser would be able to directly aim a high inten-
sity light-bundle at a tunable wavelength on individual wires by using a strong lens to focus. This could
precisely analyze the different resonances that occur in each wavelength-scale at each point of the wire.

Also, predictions on angle dependency have been done to see whether this affects the resonances[7].
It would be very interesting for future research to take this into account.

These suggestions could lead to synthesizing new nanowires existing of efficient materials and smooth
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surfaces, that can experimentally be tested on multiple optical characteristics. This will lead to nanowires
that efficiently convert (even less intense-)light to electricity, at a large range of wavelengths coming from
different angles at different polarizations. Other research is in progress on finding ways to connect
nanowires mutually to eventually form a nanowire-network. This network can then be deposited on a
thin film and be a new concept of building solar cells bottom-up.



Chapter 6

Conclusions

The main goal in this project was to experimentally find multiple resonances in core@shell nanowires and
compare these to theory. Therefore, core@shell nanowires were synthesized and optical measurements
were done using cathodoluminescence spectroscopy. With this, the research question “what are the
resonances in the scattering spectra of Cu@Cu2O core@shell nanowires of different dimensions?” could
be answered and the results could be compared to theory. Unfortunately, no multiple resonances have
been found to verify theory, probably because of the rough surfaces of the shells.

An important result did come out of the measurements: the core@shell nanowires with a relatively
large core (i.e. 80nm and 126nm), showed narrow and thus convincing resonance peaks in the CL data,
while wires with relatively small cores did not. The CL-data of these two nanowires (wire 3 and wire 6)
seemed reliable enough to say that they supported resonances at 660nm and 650nm, respectively.

Although the results did not match theory exactly (predicted resonances were at 670nm and 660nm),
these peaks indicate that this is mostly due to the rough shell which could have redshifted the response.
The plasmon resonance still shows up, as if should -even in rough inhomogeneous media.

To find multiple resonances in future research, wires with smoother surfaces need to be synthesized,
and the samples need to be cleaned before doing measurements. The latter probably explained the
asymmetric line scan profile. This can all be avoided by improving the experimental conditions, taking
into account the suggestions discussed in the previous Section. Additionally, with a different setup such
as a laser, the response to plane wave illumination can be probed, leading to more significant verification
of the predicted theory. Such a setup could also expand the research opportunities because of its ability
to examine more characteristics of nanowires.

This project has been able to synthesize Cu@Cu2O core@shell nanowires and use them to do optical
measurements on. Although measurements and theory did not agree very well, the mismatch can be
explained and the outlook is very promising. The core@shell nanowires do support resonances, probably
resulting in a large σabs with unpolarized response. Also, the metal core can act as a promising candidate
for a local contact. The proposed concept of building a cell bottom-up by connecting many nanowires
together and depositing this nanowire-network on a thin film would be the basis of a material efficient,
thin and light, flexible solar cell. Present research is getting closer and closer in finding this alternative,
efficient source of energy, which will contribute in abundant clean energy.
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