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Abstract

Gold nanoparticles are the most stable known metal nanoparticles. These particles exhibit
very unique optical properties caused by plasmonic effects. A consequence of these plasmonic
effects is the possibility of coupling between a gold particle and an emitter. In a recent paper by
Reineck et al., titled ”Distance and Wavelength Dependent Quenching of Molecular Fluorescence
by Au@SiO2 Core-Shell Nanoparticles”, this coupling was studied for different dyes as a function
of the gold-dye spacing. Gold nanoparticles with a radius of 12.7 nm were used and spacing
was induced by a silica shell. A theoretical model was presented in the paper that predicts
the obtained results very well which is a great achievement. However, experiments were only
performed for small gold nanoparticles and only quenching of the dye emission was observed.
For bigger gold nanoparticles (> 50 nm) enhancement of dye emission is possible which is much
more interesting to study since plasmon-enhanced luminescence is promising in a lot of fields.
The goal of this research is to extend the work by Reineck et al. by performing similar experi-
ments with bigger particles to study enhancement of the dye emission.

This research started with a two step synthesis of the gold nanoparticles needed for the ex-
periments. In the first step, small gold seeds with diameters close to 15 nm were synthesized
via the citrate reduction method. Subsequently, these seeds were grown larger by using hydro-
quinone as a reductor to selectively reduce additional gold salt onto the surface of the existing
nanocrystals. By tuning the number of seeds added in this step, it was possible to synthe-
size gold nanoparticles with diameters from 50 to 200 nm. Transmission electron microscopy
and absorption measurements were used to characterize the samples. It was clearly observed
that absorption shifts to longer wavelengths with increasing gold diameters. Furthermore, peak
broadening and an increase in scattering was observed with increasing particle size.

To obtain stable dispersions of the particles in ethanol, particles were capped with polyvinylpyrroli-
done. These particles were coated with uniform layers of silica via an adjusted Stöber process.
To do so, ammonia was added to the gold nanoparticle solution first. Small volumes of tetraethy-
lorthosolicate were added next for the shells to grow. After some optimization, a procedure was
developed to reproducibly coat the gold particles with uniform layers of silica.

After silica coating the outer surface of the particles was functionalised with (3-aminopropyl)
triethoxysilane introducing -NH2 groups at the surface. These -NH2 groups were used to bind
the activated ATTO700 dye. Photoluminenscence decay measurements showed that there was
coupling between the dye molecules attached to the silica coated gold nanoparticles and the
gold particles. This was indicated by the presence of a second, much faster decay path that
was only observed in the presence of the gold nanoparticles. In order to learn more about
the observed gold-dye coupling a comprehensive study is necessary. It would be interesting
for example to study the distance dependence of this coupling for bigger nanoparticles and to
study this coupling for different sizes of gold nanoparticles. This should be achievable since a
reproducible procedure to synthesize the samples is demonstrated in this thesis.
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Chapter 1

Introduction

Gold nanoparticles have been utilized for centuries because of their unique properties. One of the
most famous examples demonstrating these unique properties is the Lycurgus cup manufactured
in the 4th century A.D. by the Romans [1]. When viewed in reflected light such as daylight
the cup appears green. However, when the cup is illuminated from the inside it glows ruby
as shown in figure 1.1a. The cup is made of ruby glass which was one of the first optical
metamaterials. The crucial ingredients responsible for the extraordinary behaviour are tiny
gold droplets, typically 5 - 60 nm in size.
Another impressive example for which the unique optical properties of gold nanoparticles are
used are gothic stained windows. Combinations of gold and silver nanoparticles are used to
obtain the bright colors in the windows [2]. One of the windows of the Notre-Dame de Paris is
depicted in figure 1.1b showing the variation in colors that can be achieved.

(a) (b)

Figure 1.1: In (a) the Lycurgus cup under reflection (left) and transmittance (right). In (b) the
Gothic stained glass rose window of the Notre-Dame de Paris. The wide variety of colors is due
to metal nanoparticles.

Gold nanoparticles are the most stable known metal nanoparticles. These nanoparticles present
fascinating aspects such as the behavior of the individual particles, size-related electronic, mag-
netic and optical properties and their applications in catalysis and biology. Their promises are
in these fields as well as in the bottom-up approach of nanotechnology and they will be key
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materials and building blocks in the 21st century [3]. The synthesis of spherical gold nanopar-
ticles has been studied extensively in the past. Previous studies have shown that spherical
gold nanoparticles can be synthesized with high monodispersity and reproducibility very easily.
Back in 1857 Faraday already reported the formation of deep-red solutions of colloidal gold
by reduction of an aqueous solution of chloroaurate (AuCl4

−) using phosphorus (CS2). This
synthesis is in principle very comparable to the one described in this thesis.

The optical properties of gold particles are determined by so-called plasmonic effects, described
in more detail in section 2.1. A consequence of these plasmonic effects is the possibility of
coupling between a gold particle and an emitter. This coupling is also observed for other
plasmonic materials as well and results in quenching or enhancement of the emitter. The
amount of quenching or enhancement in such a system is determined by the spacing between
the two. Typically for small particles (< 10 nm) quenching of the emission is observed whereas
at bigger diameters (> 50 nm) enhancement is possible [4].

In a recent paper by Reineck et al., titled ”Distance and Wavelength Dependent Quenching
of Molecular Fluorescence by Au@SiO2 Core-Shell Nanoparticles”, such a system was studied.
Coupling between gold nanoparticles with a radius of 12.7 nm and different dyes was studied
as a function of spacing between the two. This spacing was induced by the presence of a silica
shell between the gold nanoparticles and the dyes attached to the outer surface of the spheres.
A theoretical model was presented in the paper that predicts this results very well which was a
great achievement. However, experiments were only performed for small gold nanoparticles so
only quenching of the dye emission is observed. However, it would be much more interesting to
study the enhancement of dye emission because plasmon-enhanced luminescence is promising
in a lot of fields.

The goal of this research is to perform experiments similar to the experiments performed by
Reineck et al. for bigger gold nanoparticles (> 50 nm). For these particles also enhancement
of the dye emission should be observable. This would enable us to test whether the theoretical
models presented in the paper also holds for plasmon-enhanced luminescence.
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Chapter 2

Theoretical background

2.1 Plasmonic effects for gold nanoparticles: unique optical
properties

A surface plasmon is a coherent oscillation of the surface conduction electrons of a metal which
can be excited by electromagnetic radiation. These surface plasmons can run over interfaces
between materials having opposite signs of the dielectric function such as a metal-air or a metal-
dielectric interface. Here the coherent oscillation of electrons creates an electromagnetic field
across the surface. Plasmon polaritons, depicted in figure 2.1a, can propagate in both the x- and
y- direction along the metal-dielectric interface for distances in the order of tens to hundreds of
microns. For a surface plasmon wave running over a gold-water interface this value corresponds
to 3 microns for a wave with a free space wavelength of 630 nm and 24 microns at 850 nm [5].
In the z-direction the plasmon decays evanascently with 1/e decay lengths on the order of 200
nm [6].

When particles much smaller than the incident wavelength of light are excited, a plasmon that
oscillates locally around the nanoparticle as depicted in figure 2.1b is obtained. The frequency
that can be used to excite such an oscillation or localized surface plasmon is known as the
localized surface plasmon resonance (LSPR).

(a)

(b)

Figure 2.1: In (a) a schematic depiction of a surface plasmon polariton (or propagating plasmon).
In (b) a schematic depiction of a localized surface plasmon found when particles much smaller
than the incident wavelength of light are excited.
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For metal nanoparticles, such as the gold nanoparticles used in the experiments, most of the op-
tical properties originate from the presence of localized surface plasmons. When these nanopar-
ticles are exposed to light, a number of processes can occur as depicted in figure 2.2 [7]:

• the light can be absorbed;

• the light can be scattered at the same frequency as the incoming light (Mie/Rayleigh
scattering);

• the absorbed light can be re-emitted (i.e. fluorescence);

• the local electromagnetic field on the incoming light can be enhanced, thereby enhancing
any spectroscopic signals from the molecules at the material surface, that is, surface
enhanced spectroscopy, such as surface enhance Raman spectroscopy (SERS).

Figure 2.2: Important optical processes resulting from the interaction of light with a gold
nanoparticle which can be: absorption of light, Mie scattering, surface-enhanced luminescence
and surface-enhanced Raman scattering from absorbed molecules.

These four processes can be strongly enhanced by the presence of a LSPR. Since the frequency
of the LSPR strongly depends on particle size and shape, optical properties also become size
and shape dependent. This makes it possible to tune the optical properties by changing size
and/or particle shape. For spherical gold nanoparticles LSPR are typically found in the visible
region where the exact position depends on the size of the spheres and the refractive index of
the medium in which the particles are dispersed. The presence of a LSPR results in extremely
high absorption and scattering of spherical gold. Gold nanoparticles with a radius of 40 nm can
be detected easily by eye down to a particles concentration of 10−14 M. For gold nanoparticles
of 60 nm, scattering is 105 times stronger than the emission of a fluorescent molecule.
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2.2 Distance and wavelength dependent quenching

As mentioned in the introduction, part of the experimental work described in this thesis is based
on work done by Reineck et al. [8]. A short summary mentioning the key points of this paper
is given in the coming section.

In the article the coupling of the near-field of a gold nanoparticle with nearby excited states of
a fluorescent dye molecule is investigated where coupling is a results of the plasmonic properties
of gold. To investigate this coupling, gold nanoparticles with a diameter of 12.7 ± 0.3 nm were
synthesized. These nanoparticles were coated with a silica shell which was functionalised with
(3-aminopropyl)triethoxysilane. After functionalisation a dye was bound to the surface of the
particles as depicted schematically in figure 2.3a. Here the silica shell acts as a rigid spacer
between the gold core and the dye. The spacing, d, was varied from 4 to 43 nm and coupling
for 4 different dyes was studied.

Besides the experimental work, a theoretical model to interpreted the results is also presented in
the article. Using this theoretical model the relative fluorescence intensity I/I0 and the relative
fluorescence lifetime τ/τ0 are calculated as a function of the nanoparticle-dye separation d. Here
I0 and τ0 correspond to the fluorescence intensity and fluorescence lifetime of the dye attached
to a silica sphere in the absence of a gold core. Calculations were performed for a normal and
a tangential orientation of the dye. These calculations were averaged which results in a theory
average to which the experimental results are compared.

(a)

(b) (c)

Figure 2.3: In (a) the system studied showing the silica spacer with thickness d with a dye
bound to the surface. In (b) experimental and theoretical results for the relative fluorescence
intensity as a function of the nanoparticle-dye separation d for the Alexa700 dye. In (c) relative
fluorescence lifetime τ/τ0 as a function of distance d between dye and gold nanoparticle. τ0

is the fluorescence lifetime of the dye molecule bound to a silica nanoparticle, which is slightly
shorter than the lifetime of the free dye in solution.

Results for both experimental and theoretical work for the Alexa 700 dye are depicted in fig-
ure 2.3b and c. From figure b and c it can be seen that there is a regime going from nearly
complete quenching, at small values of d, to a regime where the presence of the gold core becomes
negligible, d values bigger than 20 nm. It can be seen that the theoretical model presented in
the paper quantitatively predicts the observed quenching of fluorescence and shortening of the
fluorescence lifetime.
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2.3 An adjusted Stöber process for Si shell growth

In 1968 Stöber et al. reported the controlled growth of monodisperse silica spheres in the
micron size range [9]. Experiments were based on the fact that silica particles can be produced
by chemical reaction of tetraesters of silicic acid (tetraalkyl silicates) with certain solutions. In
this process a hydrolysis reaction is followed by a condensation reaction as depicted in figure 2.4.

Figure 2.4: Condenstation and hydrolysis reaction for the formation of silica out of a tetraalkyl
silicate.

The hydrolysis reaction can be acid or base catalyzed whereas the reaction rate of the conden-
sation reaction is at is maximum from basic to neutral pH. Typical reactions are performed by
mixing an alcoholic solution, water, ammonia and tetraalkyl ester (such as tetraethylorthosil-
icate) under ultrasonic vibration or constant stirring. Stirring or ultrasonic vibrations are
necessary to prevent clustering of the particles. It is shown that the reaction rate and thereby
the size of the particles obtained after the reaction is determined by the solvent used for the
reaction, the concentration of water, ammonia and tetraalkyl ester and the type of tetraalkyl
ester.

A controlled growth reaction for silica growth

The reaction used to coat the gold nanoparticles is based on the Stöber synthesis. The only
difference is that not all reaction components are mixed at the start of the reaction. Some
components are added over time. Herbert Giesche demonstrates in one of his papers that
monodisperse silica spheres can be synthesized from small silica spheres (seeds) via a controlled
growth procedure [10].

Figure 2.5: Schematic drawing of the experimental set-up for controlled growth of silica spheres.
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In the growth process, a diluted solution tetraethylorthosilicate (TEOS) in ethanol and a so-
lution containing ammonia, water and ethanol are added over time to the seed suspension in
ethanol under constant stirring as depicted in figure 2.5. Reaction conditions are chosen in such
a way that silica is formed on top of the seeds without any secondary nucleation. The final size
of the spheres is now determined by the initial diameter and concentration of the seeds and the
total amount of tetraethylorthosilicate added during the process.

Reaction conditions such as pH, TEOS concentration and ionic strength are of big importance
in this process. As depicted in figure 2.6 there is a competition between new nucleation of silica
and silica deposition on existing particles. The balance between the two is affected by those
reaction conditions. By finding the right pH for the reaction and the right addition speed of
TEOS the concentration of the reaction intermediates can be affected. The concentration of
reaction intermediates should be high enough for the reaction to proceed in an acceptable time
range but should not be so high that nucleation occurs. It is also possible to decrease the distance
that intermediates have to travel before finding a seed particle, the so called diffusion length.
This can be achieved by increasing the concentration of seeds within the reaction mixture and
increases the probability of silica deposition on the existing particles.
In an ideal situation reaction conditions are chosen in such a way that all silica formed during
the reaction is deposited on the existing particles without the formation of any new nucleus.
This would make it very easy to tune particles size (shell thickness) simply by changing the
total amount of TEOS added during the reaction.

Figure 2.6: Schematic graph of the generation and consumption of intermediate for particle
growth [11].

Since we are interested in the coating of gold nanoparticles with layers of silica, we are interested
in using gold nanoparticles as seeds. Successful coating of gold nanoparticles by doing this is
demonstrated in various papers [12, 13, 14, 15].
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Chapter 3

Synthesis of PVP stabilized gold
nanoparticles (50-200 nm)

In this chapter a two step synthesis of gold nanoparticles with diameters from 50 to 200 nm
is described. To obtain stable dispersion of the particles in ethanol, particles are capped with
PVP. An overview of the reaction process is included in figure 3.1.

Figure 3.1: Overview of the reaction: gold seeds are prepared via the citrate reduction, extra
gold is reduced onto the existing seeds using hydroquinone as a reductor to obtain particles with
diameters ranging from 50 to 200 nm. These particles are coated with PVP and transferred to
ethanol.

Gold nanoparticles are synthesized in two separated steps as described by Perrault and Chan
[16]. In the first step gold seeds are prepared using the well known citrate reduction. This
results in spherical gold nanoparticles with a diameter of approximately 15 nm which are citrate
stabilized and therefore carry a negative surface charge.
In the second step extra gold is reduced onto the surface of the seeds to obtain bigger nanopar-
ticles. For this reaction hydroquinone is used as a reductor. Since there is a small difference in
reduction potential between reducing gold chloride in the presence of metal clusters and reduc-
ing isolated AuI to Au0 it is possible to deposit gold selectively onto the surface of the seeds.
Hydroquinone is chosen as the reductor in this step because for this reductor only the deposition
of gold onto the surface of the seeds is a spontaneous process at room temperature. The reac-
tion scheme is depicted in figure 3.2. During the growth of the seeds, also some sodiumcitrate
dihydrate is added for stabilisation of the particles.

Figure 3.2: Reaction for the reduction of gold salt into solid gold using hydroquinone as a
reductor.
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It is possible to tune the final size of the nanoparticles simply by varying the number of seeds
added in this step at constant gold (Au+) concentration. By doing this, particles with diameters
from 50 to 200 nm can be synthesized. The biggest gold nanoparticles are obtained when the
minimum number of seeds is used. By increasing the number of seeds, the average particle size
is decreased.

To coat the prepared gold nanoparticles with silica it is necessary to transfer the particles to
ethanol. However, the citrate stabilized particles tend to cluster when in ethanol. To solve this
problem, the particles are capped with poly(vinylpyrrolidone) (PVP) as described by Graf et
al. [15]. PVP is an amphiphilic, nonionic polymer depicted in figure 3.3 that adsorbs onto a
broad range of different materials such as metals, in this case gold. This polymer stabilizes
colloidal particles in water and many non-aqueous solutions such as ethanol and serves as a
coupling agent when particles are coated with silica. For this synthesis PVP10 is used, which
corresponds to PVP with an average weight of 10 kg per mol.

Figure 3.3: Structural formula of Poly(vinylpyrrolidone) or PVP where n can be any positive
number. The gold nanoparticles are coated with this polymer to obtain stable dispersions in
ethanol.

3.1 Synthesis of gold seeds

In this section the first reaction step is described. The goal is to synthesize gold seed with
diameters close to 15 nm via the citrate reduction.

Before the actual reaction was started, a (cit)-solution was freshly prepared every day by trans-
ferring 0.10 g sodiumcitrate dihydrate and 10 mL water to a vial. An (Au)-solution was prepared
by transferring 0.10 g chloroauric acid and 10 mL water to a vial. This solution has to be stored
in a dark place and is centrifuged 10 min at 3500 rpm before usage to remove aggregates.
For the actual synthesis, 30 mL water and 300 µL (Au)-solution were transferred to a 250 mL
beaker. The solution was stirred and heated until the boiling point was reached. When the
solution started to boil, 900 µL (cit)-solution was added. The solution was boiled for another
10 minutes. Particle formation was indicated during the first couple of minutes of the reaction
by a color transition of the solution. As soon as no color change was observed anymore, the
solution was cooled down to room temperature. In a successful synthesis, the final solution had
a deep red color.

Representative TEM pictures of one of the seed solutions are shown in figure 3.4. It can be seen
that the seeds are nearly spherical and very uniform in size. The average diameter determined
from the picture is 16 nm. All other seeds prepared have an average diameter close to 16 nm.
Only samples showing the same uniformity in size and shape were used for further experiments.
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Figure 3.4: TEM pictures of gold seeds prepared via the citrate reduction.

3.2 Growth of the gold seeds

As a second step, the in section 3.1 prepared seeds are grown bigger. This can be achieved by
the reduction of extra gold chloride on top of the existing seeds. The goal is to obtain spherical
particles with diameters from 50 to 200 nm.

Before growth was started, a (HQ)-solution was prepared fresh every day by transferring 0.33
g hydroquinone and 10 mL water to a flask. The (cit)-solution and (Au)-solution described in
paragraph 3.1 were also used in this reaction step.
For the actual growth of the seeds, 9.4 - 9.8 mL water (depending on the balance of water
added with seeds) and 10 µL - 400 µL (depending of the desired size) of seed solution were
transferred to a flask. This solution was stirred rapidly. 100 µL (Au)-solution was added to the
solution. After at least one minute of stirring, 22 µL (cit)-solution and 100 µL (HQ)-solution
were also added. After addition of the (HQ)-solution a change in color was observed immediately
indicating the growth of the seeds. Reactions were finished as soon as no change in color was
observed anymore. The reaction time could take a couple of minutes depending on the final
size of the particles. The color of the remaining solutions also depended on the final size of the
particles.

Preparation of a gold rainbow

Gold nanoparticles with different sizes were prepared by varying the amount of seed solution
used in the reactions. The volumes of seed-solution and water used in the different reactions is
summarized in table 3.1.

Sample µL seed-solution (SII) ml water

A 8 9.8
B 100 9.7
C 200 9.6
D 300 9.5
E 400 9.4
F 500 9.3

Table 3.1: Volumes of water and gold seeds used to synthesize gold nanoparticle with different
sizes. The total reaction volume was 10 mL. 100 µL (Au)-solution and 100 µL (HQ)-solution
were used in all reactions.
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Characterization by TEM and absorption measurements

Representative TEM pictures of samples A-D and F are shown in figure 3.5 (a) up to (e). TEM
pictures of sample E are missing since no usable pictures were obtained for this sample. TEM
pictures of the seeds used to synthesize samples A to F are shown in (f). It can be seen that the
nanoparticle size can be tuned by varying the amount of seeds since the size is decreasing from
A to F. This increase in size is a result of the increasing number of gold seeds used in every
synthesis. Bigger particles become less spherical and the irregularities of the surface increase
with increasing size. The TEM pictures were used to determine the average particle size.

(a) Sample F (b) Sample D (c) Sample C

(d) Sample B (e) Sample A (f) Seed-solution

Figure 3.5: TEM pictures of gold nanoparticles with different diameters. Pictures of the seeds
used to synthesize samples A-F are shown in (f).

In order to determine how the average size of the particles and the absorption (and thereby
the color of the solutions) is related, normalised absorption spectra and pictures of the different
solutions are shown in figure 3.6. It can be seen that the absorption shifts to longer wavelengths
with increasing diameters. Also peak broadening is observed for increasing sizes which is in
agreement with theory [17]. From the appearance of the solutions and the peak broadening in
the absorption spectra it can be seen that the amount of scattering is strongly increasing for
bigger gold particles.
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Figure 3.6: Colors of the different solutions, corresponding diameters and normalised absorption
spectra. The diameters included in the legend are determined from TEM pictures.

3.3 Growth of gold seeds on a bigger scale

To obtain large numbers of gold nanoparticles the growth reaction was performed on a larger
scale. To perform the reaction on a larger scale, 50 mL water and 750 µL - 4000 µL (depending
of the desired size) of seed-solution were transferred to a vial. The solution was stirred rapidly.
1000 µL (Au)-solution was added to the solution. After at least one minute of stirring, 220 µL
(cit)-solution and 1000 µL (HQ)-solution were also added. After addition of the (HQ)-solution
a change in color was observed immediately indicating the growth of the seeds. Reactions were
finished as soon as no change in color was observed anymore. Reaction times varied from several
seconds up to minutes depending on the final size of the particles.

TEM measurements showed that spherical particles with different diameters could be synthe-
sized with this method.
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3.4 Obtaining more spherical gold particles

From figure 3.7 it can be seen that the surface of gold nanoparticles, synthesized using 220 µL of
citrate solution and fast addition of hydroquinone solution, becomes very irregular when bigger
particles are synthesized. When these particles are coated with silica, which will be described
in chapter 4, also the silica surface shows these irregularities. This can be seen in figure 3.7a.
In order to obtain more spherical and monodisperse particles, with a diameter around 200 nm,
2 adjustments were made in the synthesis which were tested separately.

In the first experiment, the hydroquinone solution was added dropwise. Since the progress of the
reaction is determined by the presence of reductor, this should slow down the reaction. A TEM
picture of the resulting particles is shown in figure 3.7b. From the picture it can be concluded
that this results in clustering of the particles so this method was considered unsuccessful.

In the second experiment, the amount of citrate solution added at the beginning of the reaction
was increased from 220 µL to 2000 µL. Since the particles are citrate stabilized, this might
result in better stabilisation at the surface of the particles, which might lead to the formation
of more spherical particles. In figure 3.7c and d TEM pictures of the resulting particles are
shown. From these pictures it can be concluded that this does lead to a more spherical surface
of the particles so this method is used for future experiments.

(a) Silica coated gold particles (b) Dropwise addition of hydroquinone

(c) 2000 µL citrate solution (d) 2000 µL citrate solution

Figure 3.7: TEM pictures showing in (a) silica coated gold particles with an irregular surface,
in (b) gold nanoparticles in which the hydroquinone solution was added dropwise and in (c)
and (d) gold particles prepared using 2000 µL citrate solution.
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3.5 Transfer of the gold nanoparticles to ethanol

Particles were coated with PVP before being transferred to ethanol. This is necessary because
clustering of particles was observed when particles were transferred to ethanol in the absence
of PVP.

For PVP capping, a 2.5 mM (PVP10)-solution was prepared by dissolution of 0.25 g PVP10
in 10 mL water by sonication. 5 mL of this (PVP10)-solution was added directly to 50 mL
solution containing the citrate stabilized gold nanoparticles in water (see section 3.3). After
24 hours of stirring the solution was centrifuged 30 minutes at 3500 rpm. As much water as
possible was removed using a pipette and the particles were resuspended in 1 mL ethanol by
sonication. Washing of the particles by centrifugation was repeated three more times. Finally
the particles were resuspended in 2 mL ethanol.

From TEM pictures it could be seen that the particles do not tend to cluster anymore after
being transferred to ethanol after PVP capping. Stability of the gold particles also increased
after PVP capping. For the nanoparticles in water without PVP irreversible clustering was
observed within a couple of days indicated by a change in color of the solution. For the PVP
capped particles, sedimentation was observed after storing them for a couple of hours to days
depending on the size of the particles. This sedimentation was caused by gravitational forces
and was observed within a shorter period of time for bigger particles. However, these particles
could be resuspended easily by sonication.
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Chapter 4

Silica coating of the PVP capped
gold nanoparticles

The gold nanoparticles were coated with silica using an adjusted Stöber process as described
in section 2.3. In this process, the PVP capped gold nanoparticles function as seeds on which
the silica is deposited. The gold nanoparticles are dispersed in ethanol and after addition of
ammonia, a TEOS solution in ethanol is added over time. This process is depicted schematically
in figure 4.1.

Figure 4.1: Overview of the reaction: the PVP capped gold nanoparticles are coated with a
layer of silica using an adjusted Stöber process for shell growth.

4.1 Results: Shell growth(1)

A 10 vol% TEOS solution in ethanol was prepared by combining 9 mL ethanol and 1 mL TEOS
to a vial.
1400 µL ethanol and 500 µL gold nanoparticle solution were transferred to a vial. 100 µL
ammonium hydroxide (5 vol% in water) was added and the sample was sonicated for 30 minutes.
The first TEM sample was prepared and the vial was placed in the sonicator again. Small
volumes of a 10 vol% TEOS solution in ethanol were added over time, as listed in figure 4.1.
Extra ammonia was added during the process and TEM samples were prepared after every
addition.
After the last addition of TEOS and ammonia, the sample was sonicated for one extra hour for
the reaction to finish. The sample was centrifuged for 30 minutes at 3500 rpm and particles
were resuspended in 2 mL ethanol. This process was repeated 3 times before the final TEM
sample was prepared.
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Time (h)

0.00 Start sonication

0.50 TEM sample (a)
+ 20 µL 10 vol% TEOS

2.00 TEM sample (b)
+ 40 µL 10 vol% TEOS

3.50 TEM sample (c)
+ 80 µL 10 vol% TEOS
+ 10 µL ammonia

5.00 TEM sample (d)
+ 160 µL 10 vol% TEOS
+ 10 µL ammonia

6.00 TEM sample (e)
After washing by centrifugation
TEM sample (f)

Table 4.1: Silica shell growth: 1400 µL ethanol and 500 µL gold nanoparticles were transferred
to a vial after which the growth process was started under constant sonication.

In figure 4.2 TEM pictures of TEM samples (a) to (f) are shown. Sample (a) was prepared
before TEOS addition so in this sample no nucleation is observed yet. In sample (b) the first
nucleation of silica is observed and in sample (c) particles are coated with a thin layer of silica.
The thickness of this silica layer increases when going to sample (e). However, also a lot of
secondary nucleation is observed. From sample (f) it can be concluded that it is possible to
remove most of these small silica particles by centrifugation. Furthermore it can be seen that
the gold particles are successfully coated with a uniform layer of silica with an average thickness
of 12 nm.

Experiments were also performed were the 10 vol% TEOS-solution was added using a syringe
pump. Because of the small reaction volume addition with a syringe pump was not very accu-
rate. If coating was succesfull results were comparable with results obtained when the TEOS-
solution was added by hand. Since there was no big advantage of using the syring pump coating
was performed without it.
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(a) Before TEOS addition (b) After the first additiom

(c) After the second addition (d) After the third addition

(e) After the fourth addition (f) After washing

Figure 4.2: TEM pictures of samples (a)-(f) prepared in different stages of silica growth accord-
ing to table 4.1. Sample (a) was prepared before TEOS was added to the solution and sample
(f) was prepared after the coating and washing procedures were finished.
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4.2 Shell growth, secondary nucleation and PVP concentration

For stabilisation of the prepared gold nanoparticles in ethanol an excess of PVP10 was used (see
section 3.5). However, when these particles are coated with silica, a lot of secondary nucleation
was observed and growth of the silica shells was a very time-consuming process. Most of the
silica added during the growth process was used for secondary nucleation and not for the actual
shell growth. Problems were found in the reproducibility of the shell growth and there was no
control over the thickness of the shells obtained.
The thickness of the shells obtained seemed to depend strongly on the way the particles were
washed after being transferred to ethanol. Particles were washed at least 3 times by centrifu-
gation and were resuspended in ethanol before they were usable for shell growth. However,
washing was a problematic and very time-consuming process.

A possible solution to overcome these problems is using smaller amounts of PVP10. According
to C. Graf et al. an amount of 60 PVP molecules per nm2 surface of the gold nanoparticles
should be enough for stabilisation of the particles [15].

In order to investigate this, new batches of gold nanoparticles were synthesized. For stabilisation
in ethanol only 100 µL of a 10 mM (PVP)-solution in water instead of 5 mL of a 2.5 mM (PVP)-
solution was used. Particles were washed by centrifugation and silica shell growth started using
a procedure almost identical to the one in section 4.1. 1400 µL ethanol and 500 µL gold
nanoparticles were transferred to a vial and placed in the sonicator. Addition of 10 vol% TEOS
and ammonia and the preparation of TEM samples was performed according to table 4.2.

Time (h)

0 Start sonication

0.25 TEM sample (a)
+ 20 µL 10 vol% TEOS

1.75 + 40 µL 10 vol% TEOS

2.50 TEM sample (b)

3.25 + 80 µL 10 vol% TEOS
+ 10 µL ammonia

4.75 Start centrifugation washes

Next day TEM sample (c)

Table 4.2: Silica shell growth for gold nanoparticles stabilized using a low PVP concentration:
1400 µL ethanol and 500 µL gold nanoparticles were transferred to a vial after which the growth
process was started under constant sonication.

In figure 4.3 TEM pictures of TEM samples (a) to (c) are shown. Sample (a) was prepared
before TEOS addition was started so in this sample no nucleation is observed yet. In sample
(b) particles are coated with a relatively thick layer of silica already. Still some secondary
nucleation of silica is observed, but the amount of nucleation is much smaller than observed in
earlier experiments. From sample (c) it can be seen that it is possible to remove most of the
small silica particles by centrifugation and the gold particles are successfully coated with a layer
of silica with an average thickness of 29 nm.
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(a) Before TEOS addition (b) After two additions

(c) After washing

Figure 4.3: TEM pictures of samples (a)-(c) prepared in different stage of silica growth with
low PVP concentation according to table 4.2. Sampe (a) was prepared before TEOS was added
to the solution and sample (c) was prepared after the coating and washing procedures were
finished.

From this experiment it can be concluded that the silica shells formed using a lower PVP
concentration are thicker after a shorter period of time, consuming less of the TEOS solution.
This can be explained by a decrease in the amount of secondary nucleation of silica which makes
the process much easier and faster. Further experiments have shown that control over the shell
thickness obtained after coating has also increased.
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Chapter 5

APTES functionalisation of the
silica coated gold nanoparticles

After the gold nanoparticles were coated with a layer of silica the outer surface of the parti-
cles is functionalised with (3-aminopropyl)triethoxysilane. By functionalisation with this silane
compound, -NH2 groups are introduced at the surface of the particles as depicted schematically
in figure 5.1. Functionalisation with this group is important because the -NH2 groups at the
surface can be used to bind compounds, such a dye, to the surface of the particles.

Figure 5.1: Overview of the reaction: the silica coated gold nanoparticles are functionalised
with (3-aminopropyl)triethoxysilane. After functionalisation -NH2 groups are present at the
surface.

Surface functionalisation was performed based on work presented by C. Graf et al. [18]. Accord-
ing to this paper, the surface occupied by one (3-aminopropyl)triethoxysilane molecule equals
0.6 nm2. Furthermore, it is shown that 2.5 monolayers of organosilane is enough to functionalise
the surface. For functionalisation enough material is provided to cover the particles with 2.5
monolayers of (3-aminopropyl)triethoxysilane.

Absorption spectra of the silica coated gold nanoparticles were used to estimate the particle
concentration (see appendix C). The total particle diameter was determined by TEM measure-
ments and these numbers were used to calculate the total surface of silica present per volume
of gold nanoparticle solution.

22



In a typical functionalisation reaction, 1 mL gold nanoparticle solution and 1 mL ethanol were
transferred to a vial and sonicated for 15 minutes. After sonication the right amount of a
diluted (3-Aminopropyl)triethoxysilane solution was added to provide enough molecules to coat
all gold nanoparticles with 2.5 monolayers of organosilane. Samples were sonicated for 3 hours
and washed by centrifugation to remove any unbound (3-Aminopropyl)triethoxysilane. Finally
particles were resuspended in 1 mL ethanol.

TEM measurements were used to ensure that the particles did not cluster during the process.
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Chapter 6

Dye attachment and gold-dye
coupling

In the final step of the reaction, the ATTO700 dye is bound to the -NH2 functionalised silica
surface of the silica coated gold nanoparticles as depicted schematically in figure6.1. This
bonding should be really easy since the activated ATTO700 dye is used in this step which
enables bond formation between the dye and the -NH2 groups at the surface.

Figure 6.1: Overview of the reaction: the ATTO700 dye (red dots) is bound to the -NH2

functionalised silica surface via the formation of a stable amide bond.

After dye binding, photolumiscence decay measurements were performed to investigate whether
there is coupling between the gold nanoparticles and the dye at the surface. Also some theoret-
ical calculations are included in this chapter, showing that for the gold nanoparticles it should
be possible to observe enhancement of the dye emission.

6.1 Gold-dye coupling: theoretical calculations

A Mathematica script was written by Freddy Rabouw based on the model presented by Reineck
et al. [8]. This script was used to perform all theoretical calculations included in this chapter.
Calculations were performed for the ATTO700 dye. The maximum in absorption (λabs) is at
700 nm for this dye and the maximum in emission (λfl) is at 719 nm as stated by the supplier
(see Appendix B).
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In the first calculations the relative fluorescence intensity and lifetime of the dye was calculated
as a function of the gold radius for a constant gold-dye separation, d, of 10 nm. Results of
these calculations are included in figure 6.2. We can see from the figure that at this separation
quenching is observed for small gold whereas enhancement is observed for gold nanoparticles
with a radius over 43 nm. It would be really interesting to demonstrate this enhancement of
the dye emission experimentally. From the graph showing the relative fluorescence lifetime it
can be seen that for all gold sizes a shortening in the lifetime is expected.
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Figure 6.2: In (a) the theoretical results for the relative fluorescence intensity and in (b) for
the relative fluorescence lifetime as a function of the gold radius calculated for a gold-dye
separation, d, of 10 nm for the ATTO700 dye. Values are calculated for normal and tangential
dye orientations (dashed lines) and were averaged to obtain the theory average (solid line).

If we now calculate the relative fluorescence intensity and lifetime as a function of the gold-dye
separation for gold with a diameter of 55 nm (the radius equals 27.5 nm) we obtain plots included
in figure 6.3. It can be seen that we expect to see enhancement of dye emission when the gold-
dye separation, d, becomes larger than 16.5 nm. We can also see that for a separation of 10 nm
we expect to see quenching of the dye-emission which is in agreement with the data presented
in figure 6.2. Again we observe a shortening of the fluorescence lifetime for all separations. At
small values of d, this effect is the strongest whereas this effects becomes smaller with increasing
values of d.

Theory normal

Theory tangential

Theory average

0 10 20 30 40 50

0.0

0.5

1.0

1.5

2.0

2.5

3.0

NC-dye separation d Hnm L

P
L

in
te

n
s
it
y

I�I 0

Theory normal

Theory tangential

Theory average

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

NC-dye separation d Hnm L

P
L

lif
e

ti
m

e
Τ

�Τ 0

Figure 6.3: In (a) the theoretical results for the relative fluorescence intensity and in (b) for
the relative fluorescence lifetime as function of the gold-dye separation, d, calculated for gold
with a diameter of 55 nm (radius = 27.5 nm) for the ATTO700 dye. Values are calculated for
normal and tangential dye orientations (dashed lines) and were averaged to obtain the theory
average (solid line).
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6.1.1 Atto700 stock solution - Absorption measurements

A stock-solution of ATTO700 in DMSO was prepared by dissolution of 1 mg ATTO700-NHS
ester (as ordered) in 1 mL DMSO (anhydrous). For more information about the dye used in the
experiments, see appendix B. Dissolution and storage of the dye was performed in absence of
water and oxygen. Anhydrous DMSO was used because of limited the stability of the NHS-ester
against hydrolysis. In order to be able to determine the exact concentration of the stock solution
3 mL ethanol and 10 µL of the stock solution was transferred to a cuvet and the absorption
spectrum depicted in figure 6.4 was measured.
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Figure 6.4: Absorption spectrum measured for the ATTO700 dye in ethanol.

A maximum in the absorption spectrum of 0.76479 was found at 692 nm. This maximum and
the εmax of 1.2 · 105 M−1cm−1 (see Appendix B) were used to calculate the dye concentration
in the diluted solution. After correcting for the dilution, a dye concentration of 1.92 mol L−1

for the DMSO stock solution was calculated.

6.2 Dye binding 1

For this experiment gold nanoparticles with an average diameter of 52 nm coated with an
APTES functionalised silica shell with an average thickness of 13 nm were used. TEM pictures
and an absorption spectrum of the particles are shown in figure 6.5. A gold nanoparticle
concentration of 5.69·10−11 mol L−1 was calculated from the absorption spectrum.
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Figure 6.5: TEM picture (left) and absorption spectrum (right) of silica coated gold nanopar-
ticles functionalised with APTES before dye binding.
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For dye binding the ATTO700 stock solution was diluted in ethanol to obtain a 6 µM and a 3
nM solution.
200 µL of gold nanoparticle solution was transferred to two vials which were sonicated for 15
minutes. To one of the samples 18 µL of the 3 nM dye solution was added, to the other sample
18 µL of the 6 µM dye solution was added. After 3 hours of sonication 1 mL ethanol was added
to both samples. Since the vials were in a horizontal position during sonication a lot of the gold
was found inside the cap indicated by coloration of the rubber.

6.2.1 TEM measurements

In figure 6.6 TEM pictures recorded for the second sample are depicted, for this sample an
excess of dye was added to the gold nanoparticles. From the pictures it can be seen that the
particles tend to cluster to form big balls, this clustering into big balls was also observed for
other samples in which an excess of dye was used.

Figure 6.6: Clusters of silica coated gold nanoparticles are found after dye functionalisation
with 18µL 6 µM dye solution.

6.3 Dye binding 2

For this experiment gold nanoparticles with an average diameter of 55 nm coated with an
APTES functionalised silica shell with an average thickness of 30 nm were used. TEM pictures
and an absorption spectrum of the particles are shown in figure 6.7. A gold nanoparticle
concentration of 1.35·10−11 mol L−1 was calculated from the absorption spectrum.

For dye binding the ATTO700 stock solution was diluted 1000 times in ethanol by transferring
10 mL ethanol and 10 µL of the ATTO700 stock solution in DMSO to a vial. 200 µL of gold
nanoparticle solution was transferred to a vial and sonicated for 15 minutes. 5 µL of the 1000
times diluted ATTO700 solution was added under sonication. After 3 hours of sonication 1 mL
ethanol was added and samples were stored.
1 extra mL ethanol was added and the sample was transferred to a cuvet. An emission spec-
trum was recorded exciting the sample at 650 nm. The sample was transferred to a vial and
centrifuged 30 min at 3500 rpm. As much supernatant as possible was removed and transferred
to a different vial. 1 mL ethanol was added to the supernatant and the precipitate. Dissolution
of the precipitate was ensured by sonication.
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Figure 6.7: TEM picture (left) and absorption spectrum (right) of silica coated gold nanopar-
ticles functionalised with APTES before dye binding.

6.3.1 Emission measurements

Emission measurements measurements were performed before and after centrifugation for the
supernatant as well as the precipitate and are included in figure 6.8 after excitation at 650 nm.
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Figure 6.8: Emission spectra after dye binding before centrifugation (BC) and after centrifuga-
tion for the supernatant (SN) and the precipitate (PR). Samples were excited at 650 nm.

A peak around 710 nm is observed in all samples indicating the presence of the ATTO700
dye. Before centrifugation the presence of the dye is expected. However, dye emission is also
observed in the supernatant as well as the precipitate. The emission observed in the supernatant
indicates the presence of unbound dye molecules that are removed from the gold nanoparticles
during the centrifugation step.
The intensity of the dye emission in the precipitate is much lower compared to the other two
samples. This indicates that also the dye emission is much lower in this sample. This can be
explained in two ways. The first explanation is that not all dye molecules were removed by
centrifugation. This is a plausible explanation since it was not possible to remove all liquid
after centrifugation. The second explanation is that some dye molecules are attached to the
gold nanoparticles. From this results only it is impossible to determine whether dye binding
was successful.
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6.4 Dye binding 3

Gold nanoparticles with an average diameter of 55 nm coated with an APTES functionalised
silica shell with an average thickness of 18 nm were used. TEM pictures and an absorption
spectrum of the particles are shown in figure 6.9. A gold nanoparticle concentration of 6.98·10−11

mol L−1 was calculated from the absorption spectrum.
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Figure 6.9: TEM picture (left) and absorption spectrum (right) of silica coated gold nanopar-
ticles functionalised with APTES before dye binding.

For dye binding, 250 µL of gold nanoparticle solution was transferred to two separate vials (a)
and (b). To the first vial, 5 µL of the 1000 times diluted ATTO stock solution was added.
To the second vial 5 µL of the 10.000 times diluted stock solution was added. After 3 hours
of sonication, 3 mL ethanol was added to both samples. Two reference solutions containing
the same dye concentrations were prepared by transferring 5 µL 1000 and 10.000 times diluted
ATTO700 stock solution and 3250 µL ethanol to two separate vials.

6.4.1 Emission measurements

Photoluminescence decay measurements were performed 700 nm for all 4 samples after excita-
tion with a pulsed laser at 656.6 nm and are included in figure 6.10. A bi-exponential fitting
procedure was used to fit the data according to the following formula:

N(t) = a exp (−t/τ1) + b exp(−t/τ2) + c (6.1)

In this formula t corresponds to the time after the laser pulse, τ1 and τ2 correspond to the
fluorescence lifetimes of the two decay processes and a, b and c are constants.

From figures (a) and (b) we can conclude that only one single-exponential decay path is available
for dye emission in the absence of gold (blue dots). We can also see that a second much faster
decay path appears when in the presence of the gold particles (red dots). We can conclude from
this that the second, faster, decay path is caused by the presence of gold. This indicates that
there is coupling between the gold particles and dye molecules.
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Figure 6.10: Photoluminescence decay measurements recorded at 700 nm after pulsed excitation
at 656.6 nm. The blue dots correspond to dye solution containing no gold particles, the red dots
correspond to solutions containing the same concentration of dye after gold-dye binding. The
gold:dye ratio is increased by a factor of 10 going from (a) to (b) whereas the gold nanoparticle
concentration remains the same. The solid lines were fitted to the data assuming a bi-exponential
decay process.

In figure (a) this feature is more pronounced than in (b). This can be explained by the difference
in concentration of the dye molecules between samples (a) and (b). For gold-dye coupling to
appear, the dye molecules have to be very close or attached to the gold particles. In sample
(b) the dye concentration is increased by a factor of 10 compared to the concentration of gold,
which is the same in both samples. Because of this increase in dye concentration relatively more
signal is collected from dyes that do not couple to the gold particles, i.e. gold particles that are
at a distance of the gold particles to large for coupling to occur. An explanation would be that
the surface of the silica coated gold particles becomes saturated at low dye concentrations. If
the dye concentration is increased after saturation of the surface, no more dyes attach to the
surface so the amount of dye molecules coupling to the gold particles remains the same.

In table 6.1 lifetimes calculated for the four solution are listed. Here τ1 corresponds to the
lifetimes of the dye in the absence of gold whereas τ2corresponds to the lifetime of the dyes that
are coupling to the gold particles. We can again conclude that there is coupling in the presence
of gold since a faster decay path appears in the presence of the gold particles.

Sample τ1 (ns) τ2 (ns) fraction gold-dye signal

Atto (2) 3.11 -
Gold-dye (a) 2.63 0.25 0.73

Atto (1) 3.20 -
Gold-dye (b) 3.12 0.23 0.12

Table 6.1: τ1, τ2 and fraction.
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The fraction of signal collected from dyes that do couple to the gold particles is calculated
according to the following formula:

Fractiongold-dye =
bτ2

aτ1 + bτ2
(6.2)

A fraction of 0.73 is found for sample (a), a fraction of 0.12 is found for sample (b). Both values
are included in table 6.1 and agree with earlier observations that more unbound dye is present
in sample (b). This makes it reasonable to conclude that dye binding has been successful and
that the gold particles and dye molecules do couple.

A shortening of the lifetime was expected for these gold nanoparticles. However, it is not
possible to determine whether the observed lifetime agrees with the predicted value since we
do not know τ0. To determine τ0 we have to determine the lifetime of the dye attached to a
silica sphere in the absence of gold. It is also not possible to determine whether this coupling
results in quenching or enhancement of dye emission. To distinguish between the two processes,
we have to measure I and I0. I corresponds to the intensity of the dye emission when the dye
is attached to the silica coated gold particles. I0 corresponds to the intensity of dye emission
when the dye is attached to silica spheres in the absence of gold.
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Chapter 7

Conclusion

Gold nanoparticles with diameters ranging from 50 to 200 nm were synthesized successfully in
a two step synthesis. In the first step, gold seeds with diameter close to 16 nm were prepared
via a citrate reduction. In the second step, hydroquinone was used as a reductor to deposit gold
ions selectively onto the seeds. It was demonstrated that it is possible to tune the final size of
the particles by changing the number of seeds added in the second step. Absorption and TEM
measurements were used to characterize the particles that were obtained. It was observed that
the absorption of the gold nanoparticles shifts to longer wavelengths with increasing sizes. Also
peak broadening and an increase in the amount of scattering was observed for bigger particles
which is in agreement with theory.

The obtained particles were coated with PVP and transferred to ethanol. Via an adjuster
Stöber process it was possible to grow a silica shell around the gold nanoparticles. During this
procces, ammonia was added to the gold nanoparticle solution in ethanol and small portions
of tetraethylorthosilicate were added over time. TEM measurements show that during this
addition shells are formed. However, also a lot of secondary nucleation of silica was observed.
The amount of secondary nucleation could be decreased by decreasing the amount of PVP
added for stabilisation of the particles. After decreasing this amount, it was possible to grow
silica shells and control over the shell thickness was obtained.

The outer surface of the particles was functionalised with (3-aminopropyl)triethoxysilane in-
troducing -NH2 groups. These groups were used to bind the activated ATTO700 dye to the
surface. After dye binding, photoluminescence decay measurements were used to determine
whether there was coupling between the gold nanoparticles and the dyes at the surface. This
coupling was indeed observed for gold with a diameter of 55 nm and a silica shell with a thick-
ness of 18 nm. Coupling was indicated by the presence of a second, much faster decay path for
dye emission that was not observed in the absence of the gold nanoparticles. In the absence
of the gold nanoparticles, only one decay path was observed. It is also observed that the frac-
tion of dye emission coupling to the gold increases with a decreasing gold-dye ratio since the
faster decay path is observed more pronounced compared to the normal decay path for a lower
gold-dye ratio.

Besides the experimental work theoretical calculations were performed showing that for bigger
gold nanoparticles (typically > 50 nm in diameter) also enhancement of dye emission is possible.
This is in contrast to the study performed by Reineck et al. [8] for gold nanoparticles with a
diameter of 12.7 nm. For these particles only quenching of dye emission is expected because of
the small size of the particles and this is also what was observed.
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Despite the observed gold-dye coupling it is not possible to conclude anything more about this
coupling than that it does take place. In order to learn more about this coupling a comprehensive
study is necessary. It would be for example interesting to study the dependance of the dye
emission on the separation between the gold nanoparticle and the dye for different sizes of gold.
This was the ultimate goal of this work but because of limited time and the time to develop a
procedure for the sample preparation, this was not achieved. However, it should be achievable
to do these measurements since a reproducible way to synthesise the samples necessary for this
study is presented.
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Chapter 8

Outlook

Based on the results obtained in this thesis, ideas for further research will be summarized below.

• A comprehensive study of the gold-dye coupling is necessary to determine whether the the-
oretical model presented by Reineck et al. is also applicable for bigger gold nanoparticles.
By following the procedures presented in this thesis it is possible to synthesize samples to
study how gold-dye coupling depends on the separation between the gold nanoparticles
and the dye for different sizes of gold nanoparticles.

• Silica spheres with different sizes can be synthesized according to the Stöber procedure.
After functionalisation with (3-aminopropyl) triethoxysilane, dyes can be attached to the
surface of these spheres. Measurements on these samples can be used as a reference for
the measurements performed for the silica coated gold nanoparticles (τ0 and I0).

• It would be interesting to study coupling between gold nanoparticles and quantum dots,
for example the core multishell quantum dots presented in part B of this thesis. If a stable
dispersion of the multishell quantum in ethanol can be obtained, it might be possible to
bind the particles to the -NH2 functionalised, silica coated gold nanoparticles. After
binding it should be possible to study coupling between the quantum dots and the gold
nanoparticles. Stabilisation of the quantum dots in ethanol can be achieved for example
by coating the particles with 11-mercaptoundecanoic acid [19].
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Appendices

A: Chemicals

Chemical Manufacterer Purity Mw

g mol−1

tri-Sodium citrate dihydrate Merck pro analysi 294.10
Gold(III) chloride hydrate / Sigma Aldrich 99.999% trace metals basis 393.83
Chloroauric acid
Hydroquinone Alfa Aesar 98.5 % 110.11
Polyvinylpyrrolidone - PVP10 Sigma Aldrich - 10 000

Tetraethylorthosilicaat (TEOS) Sigma Aldrich 99.999% trace metals basis 208.33
(3-Aminopropyl)triethoxysilane Sigma Aldrich 99% 221.37
Ethanol Alfa Aesar Anhydrous, 94 - 96% 46.07
Ammonium hydroxide Sigma Aldrich 28% ammonia in water, 99.99+% 35.05

Sodium hydroxide Merck pro analysi 40.00
Tetrakis(hydroxymethyl) - Sigma Aldrich 80% solution in water 190.56
phosphonium chloride
Dimethyl sulfoxide - DMSO Sigma Aldrich Anhydrous, 99.9% 78.13
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B: ATTO700 dye

For the experiment, the ATTO700 dye purchased at ATTO-TEC GmbH in Germany was used.
In figure 8.1 emission and fluorescence spectra of the ATTO700 dye are shown. Table 8.1
contains optical data of the carboxy derivate[20].
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Figure 8.1: Absorption spectra (blue) and fluorescence spectra (red) of the ATTO700 dye.

λabs 700 nm
εmax 1.2 x 105 M−1cm−1

λfl 719 nm
ηfl 25%
τfl 1.2 ns
CF260 0.26
CF280 0.41

Table 8.1: Optical data of the ATTO700 carboxy derivate of in water

To be able to couple the dye to the APTES functionalised silica layer around the gold nanopar-
ticles, the NHS ester of the dye is used. For this compound, the carboxylic acid of the dye is
activated by the formation of an esterbond with N-Hydroxysuccinimide. This ester easily re-
acts with amino-groups according to the reaction scheme depicted in figure 8.2 to form a stable
amide bond.

Figure 8.2: Coupling of an -NHS activated carboxylic acid to a primary amine.
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C: Calculation of extinction for spherical gold nanoparticles

A script written by Freddy Rabouw was used to calculate the extinction of spherical gold
nanoparticles at different wavelengths. The Drude Model was assumed to be valid and the
optical data for gold presented by Johnson et al. [21] was used. In figure 8.3 the extinction is
plotted as a function of the wavelength for gold with radii from 1 to 60 nm. Peak broadening
and a shift of the maximum extinction to longer wavelengths is clearly observed with increasing
gold radius.
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Figure 8.3: In (a) the extinction and in (b) the normalised extinction is plotted as a function
of the wavelength calculated for spherical gold nanoparticles with different radii.

Comparison with the absorption spectra measured for the gold rainbow

The absorption spectra for 5 different sizes of gold nanoparticles are included in figure 8.4
(see section 3.2) indicated by the solid lines. Here the diameters of the gold nanoparticles
were determined from TEM measurements. These diameters were used to calculated extinction
spectra and are indicated by the dotted lines.
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Figure 8.4: Solid lines correspond to normalised absorption spectra measured for different gold
sizes wherefore the average particle diameter is included in the legend. Dotted lines correspond
to the calculated extinction spectra.
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It can be seen that good agreement in peak position is observed for samples with diameters of
122 (orange), 97 (green) and 83 (cyan) nm. For the samples with 68 (purple) and 20 (black)
nm the peaks that were calculated are found at longer wavelengths than is predicted by the
measurements. Furthermore for the 290 nm sample (red) a second peak around 600 nm is
observed in the calculations. This peaks is not observed in the measurements. This can be
caused by the underestimating of scattering in the calculations.

For all calculations included in this thesis an extinction coefficient of 15.12 was used. This value
corresponds to the average value calculated for gold with a diameter of 50, 52, 71 or 113 nm in
diameter.
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