Simulating energy transfer of triplet excitons

Roan van Leeuwen

Submitted in part fulfilment of the requirements for the degree of Master of Science in Computational Science on the University of Amsterdam, July 18, 2018

Simulating energy transfer of triplet excitons

Master of Science Thesis

Author:
Roan van Leeuwen BSc
6353371, 10092102, 2528512 (VU)
Computational Science
University of Amsterdam

Supervisor:
dr. Ivan Infante
Theoretical Chemistry
Vrije Universiteit Amsterdam

Supervisor:
dr. Bruno Ehrler
Hybrid Solar Cells
AMOLF

Examiner:
dr. Jaap Kaandorp
Computational Science Lab
University of Amsterdam

Abstract

In the thrive for higher efficiency of solar panels, the use of singlet fission materials could be one of the solutions. Research on such materials has confirmed the existence of the singlet fission process in combination with energy transfer afterwards, for certain acceptor materials.

In this master thesis, the first aim was to computationally reproduce this experimentally observed energy transfer from tetracene, the singlet fission material, to a lead sulphide quantum dot, the acceptor material, using density functional theory, molecular dynamics and surface hopping algorithms. The second aim is to answer the question if and how the orientation of the tetracene with respect to the quantum dot influences the energy transfer.

The accuracy of the functionals used in this work was determined to be rough, especially for charge transfer states. After adjusting the (charge transfer) state energies, the energy transfer of triplet excitons from tetracene to quantum dots was successfully reproduced using the GFSH algorithm, with transfer times that are not contradicting the experimentally determined time frame. Analysis of the behaviour of the coupling during the simulated trajectory suggests that the distance between tetracene and the closest atom of the quantum dot ligands has a significant influence on the coupling. Finally, no clear dependencies are found between coupling and one of the other variables.

Contents

Abstract i
1 Introduction 1
1.1 Introduction 1
1.2 Context 2
1.3 Problem 3
1.4 Outline 4
2 Background Theory 5
2.1 Quantum Physics and Quantum Chemistry 5
2.1.1 Wave functions 5
2.1.2 The Schrödinger equation and the Hamiltonian 6
2.1.3 Quantum numbers 6
2.1.4 Photovoltaic Effect 7
2.1.5 Singlet and Triplet States 7
2.1.6 Singlet Fission 8
2.1.7 Tetracene 10
2.1.8 Pentacene 10
2.2 Computational Theory 11
2.2.1 Introduction 11
2.2.2 Density Functional Theory in general 11
2.2.3 Different Functionals 12
2.3 List of Symbols 13
3 Research Part I: Exploratory simulations using DFT 15
3.1 Introduction 15
3.1.1 Background 15
3.1.2 Materials 15
3.1.3 Geometry of the Materials 16
3.1.4 Outline 16
3.2 Theory 17
3.2.1 Introduction 17
3.2.2 TheoDORE 17
3.3 Method 18
3.3.1 Method 1: DFT with Different Functionals using ADF 18
3.3.2 Method 2: DFT with Different Functionals using Orca and TheoDORE 20
3.4 Results and Analysis 21
3.4.1 Tetracene Results 21
3.4.2 Tetracene Analysis 21
3.4.3 Pentacene Results 23
3.4.4 Pentacene Analysis 24
3.5 Discussion 26
3.6 Conclusion 26
4 Research Part II: Energy Transfer from Tetracene to Quantum Dot with Non-Adiabatic Molecular Dynamics 27
4.1 Introduction 27
4.1.1 Description 27
4.1.2 Quantum Dot 27
4.1.3 Literature 28
4.1.4 Objective 28
4.1.5 Outline 29
4.2 Experimental Research 29
4.3 Theory 31
4.3.1 Introduction 31
4.3.2 Molecular Dynamics 31
4.3.3 Fewest-switches surface hopping 32
4.3.4 Classical path approximation 33
4.3.5 GFSH 34
4.4 Method 35
4.4.1 Introduction 35
4.4.2 Starting geometry determination with CP2K 35
4.4.3 Trajectory Calculation using MD by CP2K 36
4.4.4 Recalculation of Hamiltonians and coupling with QMWorks 36
4.4.5 Simulation of the Energy Transfer with PYXAID 37
4.5 Setups 38
4.5.1 Preparation: approximating the charge-transfer state energies 38
4.5.2 Different ligands 39
4.6 Results and analysis 43
4.6.1 Hamiltonian Results 43
4.6.2 Hamiltonian analysis 48
4.6.3 Energy transfer results 55
4.7 Discussion 61
4.7.1 Error Margins 61
4.7.2 Further uncertainty 61
4.7.3 Surface hopping 62
4.7.4 Coupling 63
4.8 Conclusions 64
5 Conclusion 65
5.1 Summary of Thesis Achievements 65
5.2 Applications 66
5.3 Future Work 66
A Coordinates 68
A. 1 Tetracene Monomer 68
A. 2 Tetracene Dimer 69
A. 3 Pentacene Monomer 72
A. 4 Pentacene Dimer 73
A. $5 \mathrm{PbS}+7 \mathrm{C}$ and Tetracene 76
A. $6 \mathrm{PbS}+9 \mathrm{C}$ and Tetracene 82
B Excitation energy results 89
B. 1 Tetracene 89
B. 2 Pentacene 90
C Coupling of Setup 9C versus variables 91
Bibliography 93

Chapter 1

Introduction

1.1 Introduction

Solar panels are increasingly used for generating electricity all over the world. Despite this rising usage of solar panels, their efficiency is still rather limited, with energy efficiency values around 20% for panels on the market, and of $28.8 \%[52,25]$ as a maximum obtained under lab conditions. There are promising processes within a range of materials that can potentially improve the efficiency of solar energy systems, such as carrier multiplication. In organic materials, carrier multiplication's equivalent is called singlet exciton fission, which has experimentally been observed in certain materials. To use the benefits of singlet fission, one needs to eliminate or significantly reduce the losses that necessary processes, such as energy transfer, cause. By computationally reproducing experimentally observed energy transfer of excitons generated by singlet fission, the aim of this thesis is to find out how energy transfer can be made more efficient. To do so, question how the ideal placement of the donor with respect to the acceptor is, needs to be answered.

1.2 Context

Global warming is almost generally accepted as a big problem, for which solutions have to be found with an increasing urgency. Hence, one of the currently interesting fields of research is finding full-fledged alternatives to fossil energy. Solar panels are one of the alternatives that are already on the market. Although the usage of solar panels is increasing rapidly, their efficiency is still relatively low, since roughly 20% of the energy of light reaching the panel is converted into energy. In lab situations, higher efficiencies are obtained, up to 28.8% [52, 25].

A big part of the loss of efficiency is caused by the fixed band gap, or HOMO-LUMO gap for the case of organic molecules. The loss is caused by the spectrum of the sun, which is well spread over a big range of wavelengths. Photons with an energy equal to the band gap can provide excitations without loss of energy. Photons with lower energy will not be absorbed. Hence, all energy of these photons can be considered as losses. The photons with higher energy than the band gap can be absorbed, but will reduce in energy to the lowest excited state. Hence, the difference between the energy of the photon and the energy of the lowest excited state is also lost energy. Combining this calculation of losses with the solar spectrum results in the Shockley-Queisser limit, describing the maximum efficiency for monocrystalline materials. Under these conditions, the optimal band gap is at 1.34 eV , with a theoretical maximum energy efficiency of $33.7 \%[52]$.

One of the solutions that might help overcoming the Shockley-Queisser limit and hence might help improving the efficiency of future solar panels, is the use of materials with carrier multiplication capabilities. In organic materials, this process is called singlet fission. Herein, an electron is excited to form an excited state called the singlet exciton, which converts into two triplet excitons. Hence, one of the requirements for a material to allow singlet fission to take place, is that the singlet excitation is roughly two times higher in energy than the triplet excitation, compared to the ground state energy.

A singlet fission material on its own will not be able to exceed the Shockley-Queisser limit, but in combination with other materials it might. For useful solar applications it is therefore important that the energy transfer from singlet fission materials to the second, acceptor, material
is as efficient as possible. An important aspect herein is the energy transfer time. If the energy is transferred faster, there is less time and hence less probability for processes causing losses, such as recombination, to take place.

This research focusses on the energy transfer from singlet fission materials into quantum dots. This has experimentally been observed for setups from tetracene to lead sulphide quantum dots[64], as well as from pentacene to lead selenide quantum dots[59]. In the experiment with tetracene, the quantum dot ligand length is varied to show an exponential decrease in transfer efficiency. This indicates that the transfer mechanism is Dexter energy transfer[?]. Knowing that the energy transfer does occur, the next challenge is to optimise the transfer. Using computational techniques, we aim to give insights in the ideal positioning of a singlet fission material, represented by a single tetracene molecule, with respect to the acceptor, a lead sulphide quantum dot. To do so, the focus is solely on the energy transfer process. Hence, the singlet fission process is ignored, which leads to an initial situation where the triplet exciton is located at the tetracene molecule. Using density functional theory, molecular dynamics and surface hopping algorithms, the electron transfer from tetracene to the quantum dot is simulated and analysed.

1.3 Problem

In the experiments performed in labs, the energy transfer from tetracene and pentacene to quantum dots has been confirmed to take place. However, it is hard to determine the exact microscopic distance and orientation between donor and acceptor. With simulations of the situation, it can easily be seen how the donor is orientated with respect to the acceptor. Using computational techniques, we want to find out how the setup influences the energy transfer. The first target of the research is to computationally reproduce the energy transfer from tetracene to lead sulphide quantum dots. As a next step, we want to know how the different angles influence the energy transfer: how should the tetracene molecule be rotated around its longest and its smallest axis, to observe optimal energy transfer? Furthermore, we also want to obtain information on the role of the intermolecular distance. Should the distance be as small as possible? And does the positioning and length of the ligand influence the energy
transfer?

1.4 Outline

In the remainder of this thesis, the aim is to find answers to the posed research questions. This research covers various parts of different fields of science. Therefore, Chapter 2 describes the theory and background behind the relevant parts of chemistry, physics and informatics. This includes a short explanation of quantum physics and the photovoltaic effect, as well as a brief description of singlet and triplet states and the singlet fission process. Furthermore, density functional theory, the computational technique that is the basis of the majority of the computations performed for this thesis, is explained in this chapter.

Hereafter, the research is described, divided into two different parts. In the first part, Chapter 3, exploratory density functional theory computations are performed on tetracene monomers and dimers. Pentacene monomers and dimers were also analysed in the same way, as a reliability check. For both materials, different types of functionals are used to give insights in the accuracy and speed of calculating the excited states of the setups.
In Chapter 4, the second research part, molecular dynamics algorithms are used to simulate the dynamics of a setup in which a tetracene molecule is placed close to a lead sulphide quantum dot. The setups are analysed for two different ligands with both thousands of unique time steps.
The final chapter, Chapter 5, summarises the conclusions that can be drawn from the results. Furthermore, this chapter describes if, how, and to which extent, the results and conclusions are able to provide answers to the research questions.

Chapter 2

Background Theory

Background Theory Statement

In this section, we take a deeper look into the theory behind the occurring phenomena. The two main parts of this section are 'Quantum Physics and Quantum Chemistry' (2.1) and 'Computational Theory' (2.2). The symbols that are used are as much as possible in line with the corresponding references, and are only altered in case of duplicate symbols or meanings.

2.1 Quantum Physics and Quantum Chemistry

2.1.1 Wave functions

In classical mechanics, $x(t)$ would describe the position of an object, e.g. a particle, over time t. In quantum mechanics, the same particle is described by its wave function, $\Psi[27]$. The wave function is related to the probability to find the particle between a and $b p_{a<x<b}$, as

$$
\begin{equation*}
p_{a<x<b}=\int_{a}^{b}\|\Psi(x, t)\|^{2} d x . \tag{2.1}
\end{equation*}
$$

In this case, Ψ is dependent of time (t) and a one-dimensional space coordinate (x).

2.1.2 The Schrödinger equation and the Hamiltonian

The wave function obeys the Schrödinger equation[54], which can be denoted as[27]

$$
\begin{equation*}
\hat{H} \Psi=E \Psi \quad \text { or } \quad \hat{H} \Psi=i \hbar \frac{\delta}{\delta t} \Psi \tag{2.2}
\end{equation*}
$$

depending on Ψ being time-independent or time-dependent, respectively. Herein, \hat{H} is the Hamiltonian operator, and E are the allowed energies. Furthermore, the values E can be seen as the eigenvalues and expectation values of \hat{H}, with the Ψ-functions being the corresponding eigenfunctions.

The Hamiltonian operator for a single particle can be described as

$$
\begin{equation*}
\hat{H}=-\frac{\hbar^{2}}{2 m} \nabla^{2}+V \tag{2.3}
\end{equation*}
$$

in which m is the mass of the particle, \hbar is Planck's constant divided by $2 \pi, \nabla$ is the nabla operator and V describes the potential.

2.1.3 Quantum numbers

The state of a particle, say an electron, is defined by quantum numbers. There are two numbers that determine the energy of the electron. These are the principal quantum number n and the azimuthal quantum number l. The number n is restricted to be a positive integer, whereas l can have all values from 0 to $n-1$, thus $l=0,1,2, \ldots n-1$.

The other two quantum numbers defining the state of a particle, are the magnetic quantum number m_{l} and the secondary spin quantum number m_{s}. These quantum numbers are restricted to the values $m_{l}=-l,-l+1,-l+2, \ldots, l-1, l$ and $m_{s}=-s,-s+1, \ldots, s-1, s$, where s is the (primary) spin quantum number, which is $s=\frac{1}{2}$ for a single electron.

2.1.4 Photovoltaic Effect

The n and l numbers indicate the orbital that the electrons are in. The Pauli exclusion principle states that two identical fermions (electrons, for example) cannot occupy the same state. Hence, the orbital with the lowest energy ($n=1 \rightarrow l=0$) can only hold two electrons, since m_{l} has to be zero and the spin can be either $\uparrow\left(m_{s}=\frac{1}{2}\right)$ or $\downarrow\left(m_{s}=-\frac{1}{2}\right)$. The bands with low energy, which have a higher probability to be filled, are called valance bands, the higher energy band is called the conduction band. The band gap energy E_{g} is the difference in energy between the valence and the conduction band.

A photon may be absorbed and excite an electron from the valance to the conduction band. This process is called photoconductivity and the energy of the photon evidently has to satisfy[68]

$$
\begin{equation*}
E_{\text {photon }} \geq E_{g} . \tag{2.4}
\end{equation*}
$$

Using $\mathrm{p}-\mathrm{n}$ junction, the positive side (p , with a lack of electrons) is connected to the negative side (n , with an excess of electrons), creating a potential difference, which, upon photo excitation can generate a current. This process is called the photovoltaic effect.

2.1.5 Singlet and Triplet States

In a system consisting of two electrons such as an exciton, multiple spin configurations are possible. For the singlet state, the quantum number s is zero, resulting in the configuration:

$$
\begin{equation*}
\frac{1}{\sqrt{2}}(\uparrow \downarrow-\downarrow \uparrow), \text { with } m_{s}=0 \tag{2.5}
\end{equation*}
$$

The triplet states are the three possible configurations for the spin quantum number $s=1[27]$:

$$
\begin{align*}
\uparrow \uparrow, \text { with } m_{s} & =1 ; \\
\frac{1}{\sqrt{2}}(\uparrow \downarrow+\downarrow \uparrow), \text { with } m_{s} & =0 ; \tag{2.6}\\
\downarrow \downarrow, \text { with } m_{s} & =-1 .
\end{align*}
$$

The ground and first excited singlet state are denoted as S_{0} and S_{1}, whereas the energetically lowest triplet state is denoted as T_{1}. There are multiple ways to generate triplet states and the generation method that is studied in this thesis is fission of singlet excitons.

2.1.6 Singlet Fission

An organic chromophore that is excited to a higher singlet state is able to share its excitation energy with a neighbouring organic chromophore in the ground state. This results in two neighbouring chromophores in excited triplet states. The process is called singlet fission and a schematic representation is included in figure 2.1[56]. For singlet fission to take place rapidly,

Figure 2.1: a schematic representation of singlet fission; at step 1, chromophore A is excited to state S_{1}, denoted as $A\left(S_{1}\right)$; at step 2 the singlet fission takes place, converting $A\left(S_{1}\right)+B\left(S_{0}\right)$ to
 $A\left(T_{1}\right)+B\left(T_{1}\right)$.
there several of conditions that need to be satisfied; not all of them are well known.[56] The biggest requirement is the presence of two organic molecules for which the energy of the excited singlet state is approximately twice the energy of the triplet state $\left(E\left(S_{1}\right) \gtrsim 2 E\left(T_{1}\right)\right)$.

The most direct description of the singlet fission process is based on the reverse triplet-triplet annihilation from Merrifield's theory [13, 32]:

$$
\begin{equation*}
S_{1} \Leftrightarrow{ }^{1}(\mathrm{TT}) \Leftrightarrow T_{1}+T_{1} \tag{2.7}
\end{equation*}
$$

Herein, ${ }^{1}(\mathrm{TT})$ is an intermediate state of two correlated triplets, which from now on is called multiple exciton state (ME). Although some researchers supported this direct mechanism[76], the estimated direct coupling matrix element was about two orders of magnitude too small to explain the singlet fission timescale in pentacene[8, 14]. To explain the rapid fission, the
existence of quantum superposition between S_{1} and ME was suggested[14]:

$$
\begin{equation*}
S_{0} \rightarrow\left[S_{1} \Leftrightarrow \mathrm{ME}\right] \rightarrow \mathrm{ME}^{\prime} \rightarrow T_{1}+T_{1} \tag{2.8}
\end{equation*}
$$

in which $\left[S_{1} \Leftrightarrow \mathrm{ME}\right]$ is the superposition, and ME^{\prime} is the multiple exciton state that is no longer coupled to S_{1}. However, this equation does not include charge transfer states (CT), which are believed to play a role in the fission mechanism in tetracene crystallites, pentacene dimers and pentacene crystallites $[13,8,9]$. Charge transfer states are the result of an electron that is

Figure 2.2: a simplified schematic representation of the allowed spin configurations and transitions of the states S_{1} (one molecule in S_{1} and the other in S_{0}), CT (the charge transfer state) and TT (the triplettriplet state)[26]. In every square, the top lines are the LUMO and the bottom lines the HOMO; the horizontal separation distinguishes the two molecules.
excited to a neighbouring molecule, as schematically shown in figure 2.2. With the inclusion of charge transfer states, the fission mechanism could be written as[39]:

$$
\begin{equation*}
S_{0} \rightarrow\left[S_{1} \Leftrightarrow \mathrm{CT} \Leftrightarrow \mathrm{ME}\right] \rightarrow \mathrm{ME}^{\prime} \rightarrow T_{1}+T_{1}, \tag{2.9}
\end{equation*}
$$

where $\left[S_{1} \Leftrightarrow \mathrm{CT} \Leftrightarrow \mathrm{ME}\right]$ is a quantum superposition state between the Frenkel exciton $\left(S_{1}\right)$, the charge transfer state and the multiple exciton state. This is a rather general notation, whereas some studies indicate that the process might be material and/or structure dependent. In pentacene dimer, charge transfer states behave as high-lying virtual states in a super-exchange
mechanism engendering ultra-fast fission[39, 8]. In pentacene crystallites on the other hand, ultra-fast fission requires the involvement of charge transfer states, which are in this case lowerlying due to the polarizability of the surrounding molecules, mixing with the adiabatic singlet exciton $S_{1}[9]$. Efficient singlet fission has only been found in a select number of molecules, including, as already mentioned, pentacene and tetracene[39, 77, 3].

2.1.7 Tetracene

Tetracene consists of four alkene rings, see figure 2.3 (a). Singlet fission in tetracene is an uphill process, since excitation energy of the S_{1} state is lower that the sum of the excitation energy of two triplet states, $E\left(S_{1}\right)<E\left(2 T_{1}\right)$. The excitation energy of S_{1} and T_{1} are 2.32 eV and 1.25 eV for a tetracene crystal at room temperature[66].

(a)

(b)

Figure 2.3: tetracene (a) and pentacene (b) molecular structure

2.1.8 Pentacene

The pentacene molecule is shown in figure 2.3 (b). The excitation energies in pentacene are favorable for singlet fission. For a monomer, the excitation energies are 2.3 eV for S_{1} and 0.86 eV for $T_{1}[77,29,11]$. In crystal structure, the excited-state energy of S_{1} is $1.83 \mathrm{eV}[65]$.

2.2 Computational Theory

2.2.1 Introduction

As already mentioned in the introduction, this is a theoretical research zoomed in to very small scales. Hence, the computations are performed with software and algorithms developed in the theoretical chemistry research field. Albeit multiple techniques are to be used, the majority of the computations is based on one method, called Density Functional Theory (DFT). This section describes the background of DFT, as well as the differences between a couple of the relevant functionals.

Since this is the only general method, no other computational methods are described at this point. The remaining methods and algorithms that are used are described specifically in theory sections in the chapters they are used in.

This section is based on, and uses the notations of, an article written by Cramer and Truhlar[15].

2.2.2 Density Functional Theory in general

Density functional theory provides a method for the computation of energies, charge distributions and wave functions. The electronic energy of the computed system can be approximated as:

$$
\begin{equation*}
E=T_{n}+\varepsilon_{n e}+\varepsilon_{e e}+\varepsilon_{x c} . \tag{2.10}
\end{equation*}
$$

Herein, T_{n} is the kinetic energy of non-interacting electrons, $\varepsilon_{n e}$ the interaction between the electron distribution and the nuclei, $\varepsilon_{e e}$ contains the interaction energy of the spin densities with each others and with themselves, described by the classical Coulomb energy.

The remaining energies and energetic corrections are described by the exchange-correlation energy, $\varepsilon_{x c}$. This $\varepsilon_{x c}$ corrects for the lack of interactions in T_{n}, and the unphysical interactions of the electrons with themselves, which are included in $\varepsilon_{e e}$. Also, $\varepsilon_{x c}$ includes exchange energy, taking into account the exchange of electron variables due to indistinguishability, and correlation energy, taking into account that multiple single-electron spin densities put together are not equal
to one many-electron spin density. $\varepsilon_{x c}$ is written as a functional of the spin-density and it is called the spin-density functional[15] or exchange-correlation functional[73].

These densities of a system can be calculated using the occupied Kohn-Sham spin-orbitals, $\psi_{j \sigma}$, as

$$
\begin{equation*}
\rho_{\sigma}=\sum_{j}^{\mathrm{occ}}\left|\psi_{j \sigma}\right|^{2} . \tag{2.11}
\end{equation*}
$$

The Kohn-Sham spin-orbitals can be computed with self-consistent field calculations, and the σ and j represent the spin number and other quantum numbers, respectively. With the usage of Kohn-Sham theory comes one of the limitations of DFT. Kohn-Sham theory is not able to treat all open-shell systems or excited states well. Still, Kohn-Sham theory remains the most accurate available approach for most cases. Furthermore, there are functionals that can overcome these disadvantages.

The existence of the density functional is confirmed by the Hohenberg-Kohn theorem[30]. However, there is no closed-form expression for the functional, and improving the approximations of the functional can not be done by a systematic route. This does not mean that no useful approximations exist. In the next subsection, 2.2.3, the different type of functionals are described.

2.2.3 Different Functionals

The first approximation to a density functional is the Dirac-Slater approximation, which is an approximation to exchange[16, 55]. Taking correlation into account by calculations on uniform electron gas, results in the local spin density approximation (LSDA), depending only on spin densities and not on derivatives of the density, nor on orbitals[12, 70, 47].

As a next step, a dependence on the gradients of the spin densities can be added. These type of functionals are called generalised gradient approximations (GGAs). One of the numerous GGAs was developed by and named after Perdew, Burke, and Ernzerhof, hence called PBE[45]. Both of the two thusfar mentioned types of functionals, LSDA and GGAs, include self-exchange and self-correlation. As a result of these unphysical and hence unwanted additions, calculations with such functions turn out to calculate too small HOMO-LUMO gaps.

Self-exchange and self-correlation can be eliminated by including respectively Hartree-Fock exchange and kinetic energy density $[46,6,75]$. The addition of Hartree-Fock exchange results in functionals called hybrid GGAs or hybrid functionals. If kinetic energy density is added, the functionals are called meta functionals. The combination of the two results in hybrid meta functionals. The hybrid functional that is by far the most popular, is called B3LYP[57]. Hybrid functionals, such as B3LYP, have the advantage that they overcome the problems with open-shell systems and excited states as caused by Kohn-Sham theory.

Out of all the available functionals, new functionals are created that combine multiple functionals to a curtain extent. The last group of functionals worth mentioning is called the range-separated functionals. These functionals combine different methods for calculating shortrange and long-range exchange. CAM-B3LYP is such a range-separated functional, combining the B3LYP functional with a long-range correction called Coulomb-attenuating method (CAM) [73, 60].

2.3 List of Symbols

CT charge transfer state
$E \quad$ total energy
$\varepsilon_{e e} \quad$ interaction energy between electrons
$\varepsilon_{n e} \quad$ interaction energy of electrons with nuclear framework
$\varepsilon_{x c} \quad$ exchange-correlation energy/functional
$\hat{H} \quad$ hamiltonian operator
$h \quad$ original Planck's constant
$\hbar \quad$ Planck's constant h divided by 2π, i.e. $\hbar=1.054572 \times 10^{-34} \mathrm{Js}[27]$
HOMO highest occupied molecular orbital
$i \quad$ complex component
$j \quad$ collection of all quantum numbers, except spin
$l \quad$ azimutal quantum number
LUMO lowest unoccupied molecular orbital
$m_{l} \quad$ magnetic quantum number
$m_{s} \quad$ secondary spin quantum number
ME multiple exciton state of two combined triplets
$n \quad$ principal quantum number
$\Psi \quad$ wave function, mostly unrestrained
$\psi \quad$ wave function, mostly restrained to specific variables, dimensions and/or conditions
$\rho \quad$ spin density
$\sigma \quad$ spin quantum number
$S_{n} \quad$ n'th excited singlet state, with S_{0} the ground state
$T_{n} \quad$ kinetic energy
$T_{1} \quad$ the lowest excited triplet state
${ }^{1}$ (TT) combined state of two triplets, mostly depicted as ME
$V \quad$ total potential energy
v local potential function
$W \quad$ interaction compontent of E
$w \quad$ interaction function
$\nabla^{2} \quad$ Laplacian, which depends on the used coordinate system; for cartesian coordinates, it is defined as: $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right)$
$\uparrow \quad$ spin up, i.e. $m_{s}=\frac{1}{2}$
$\downarrow \quad$ spin down, i.e. $m_{s}=-\frac{1}{2}$

Chapter 3

Research Part I: Exploratory simulations using DFT

3.1 Introduction

3.1.1 Background

In this chapter, DFT calculations are performed on the singlet fission materials. Since there are many different functionals that all have certain qualities and downsides, it is needed to get an impression of the results that the different functionals deliver, as well as the computational time it takes to use them.

In the research performed for this chapter, the focus is mostly on the ground states and excited states, the excitation energies and for the acceptor materials on the band gap.

3.1.2 Materials

The exploratory DFT calculations are performed on two different singlet fission materials: tetracene and pentacene. Both are studied as a monomer and as a dimer. The monomer is interesting, since it provides a good insight in all the locally excited states. The dimer is
complementary to the monomer, because it allows the existence of charge transfer states, as well as delocalised states.

For tetracene, the first excited singlet state is 2.35 eV higher than the ground state, measured in crystal structure with emission spectra for prompt fluorescence. The first excited triplet state is 1.25 eV , determined with emission spectra for delayed fluorescence.[66]

In the crystal structure, the first excited singlet state of pentacene is determined to be 1.83 eV higher than the ground state, where the first excited triplet state is 0.73 eV higher than the groundstate[38].

3.1.3 Geometry of the Materials

For the monomers, a geometry optimisation is performed with the PBE functional in the ADF software package $[62,19,5]$. For the dimers, the structures are build by ADF-BAND[61, 72, 21, 20, 48] using lattice parameters taken from literature[40, 41]. Geometry optimisations are run with the PBE functional.

3.1.4 Outline

The remainder of this chapter starts with a section that describes how software package TheoDORE is able to determine electron-hole localisation variables quantitatively. Thereafter, the method section describes the two methods used for calculating the relevant data. The results and analysis section is split into multiple subsections for tetracene and pentacene. The last two sections of this chapter are the Discussion and Conclusion parts.

3.2 Theory

3.2.1 Introduction

In this section, the software and its underlying theory that are specifically needed for this chapter, are described. In this chapter, a package called TheoDORE is the only used software that is not covered by Chapter 2. Descriptions of TheoDORE and the theory behind TheoDORE are provided in the next subsection[50].

3.2.2 TheoDORE

TheoDORE can be used to calculate quantitative information on the localisation of, and distance between, the electron and the hole. To do so, TheoDORE starts with the transition density matrix (1TDM), denoted as

$$
\begin{equation*}
D_{\mu \nu}^{O I}=\left\langle\Phi^{O}\right| \hat{a}_{\mu}^{\dagger} \hat{a}_{\nu}\left|\Phi^{I}\right\rangle \tag{3.1}
\end{equation*}
$$

where a^{\dagger} and a are the creation and annihilation operators, respectively. Then, the charge transfer number of fragments A and B is written as[51]

$$
\begin{equation*}
\Omega_{A B}=\frac{1}{2} \sum_{\mu \in A} \sum_{\nu \in B}\left[\left(\mathbf{D}^{0 I} \mathbf{S}\right)_{\mu \nu}\left(\mathbf{S D}^{0 I}\right)_{\mu \nu}+D_{\mu \nu}^{0 I}\left(\mathbf{S D}^{0 I} \mathbf{S}\right)\right] \tag{3.2}
\end{equation*}
$$

in which the summation runs over all atomic basis functions μ and ν of A and B , respectively. Now, the total amount of charge separation [50] can be calculated by

$$
\begin{equation*}
\omega_{C T}=\frac{1}{\Omega} \sum_{B \neq A} \Omega_{A B}, \tag{3.3}
\end{equation*}
$$

resulting in a value between 0 and 1 , due to scaling by Ω. A value of $\omega_{C T}=0$ indicates a local excitation, and a complete charge transfer state results in $\omega_{C T}=1 . \Omega$ can be physically interpret as a measure of the single-excitation character of an excitation, and it can be calculated
as

$$
\begin{equation*}
\Omega=\operatorname{tr}\left(\mathbf{D}^{I 0} \mathbf{S} \mathbf{D}^{0 I} \mathbf{S}\right) \tag{3.4}
\end{equation*}
$$

Herein, $\mathbf{D}^{I 0}$ is the transpose of $\mathbf{D}^{0 I}$.
TheoDORE can furthermore be used for giving an expectation value of exciton size, which is defined as the distance between the electron and hole,

$$
\begin{equation*}
d_{e x c}=\sqrt{\left.\langle | \vec{x}_{h}-\left.\vec{x}_{e}\right|^{2}\right\rangle_{e x c}} . \tag{3.5}
\end{equation*}
$$

This distance can be calculated from the output of computations using

$$
\begin{equation*}
d_{e x c}^{2}=\frac{1}{\Omega} \sum_{\xi \in\{x, y, z\}}\left(\operatorname{tr}\left(\mathbf{D}^{I 0} \mathbf{M}_{\xi}^{(2)} \mathbf{D}^{0 I} \mathbf{S}\right)-2 \operatorname{tr}\left(\mathbf{D}^{I 0} \mathbf{M}_{\xi}^{(1)} \mathbf{D}^{0 I} \mathbf{M}_{\xi}^{(1)}\right)+\operatorname{tr}\left(\mathbf{D}^{I 0} \mathbf{S D}^{0 I} \mathbf{M}_{\xi}^{(2)}\right)\right) . \tag{3.6}
\end{equation*}
$$

Where $M_{x, \mu \nu}^{(k)}$ can be calculated using the atomic orbitals χ_{μ} and χ_{ν}, as

$$
\begin{equation*}
M_{x, \mu \nu}^{(k)}=\int \chi_{\mu}(r) x^{k} \chi_{\nu}(r) d r \tag{3.7}
\end{equation*}
$$

3.3 Method

3.3.1 Method 1: DFT with Different Functionals using ADF

This subsection describes the time-dependent density functional theory simulations that are performed with the ADF software [62, 19, 5]. Within ADF, one needs to define a number of computational properties. These properties include the basis set, the integration accuracy, a frozen core option and a relativity option. Furthermore, the Tamm-Dancoff Approximation (TDA) can be turned on or off. Any other options are kept at default.

In general, increasing the accuracy, the basis set functions and turning on the other options results in better results, but also in a significantly longer computation time. For most simulations, not too high quality properties are chosen, to keep the computational time convenient. As a benchmark, a couple of simulations with higher quality are performed on tetracene, to see
if the lower quality simulations are appropriate or not.

Tetracene

All the functionals, with the corresponding properties, that were used for tetracene, are listed in table 3.1.

	PBE	PBE (high qual. $)$	B3LYP	B3LYP (high qual.)	CAM- B3LYP	CAMY- B3LYP	MO6-2X
mon/dim	both						
sing/trip	both	both	both	both	both	sing	both
Basis Set	DZP	TZ2P	DZP	TZ2P	DZP	DZP	DZP
Integ. Acc.	normal	verygood	normal	verygood	normal	normal	good
Frozen C.	small	none	none	none	none	none	none
Relativity	none						
TDA	off	off	off	off	both	off	on
ADF	2014.08	2014.08	2014.08	2014.08	2016.01	2014.08	2014.08

Table 3.1: the functionals with their corresponding properties as used during the calculation of the excitation energies of tetracene. The row labels stand for monomer/dimer; singlet/triplet excitations; basis set; integration accuracy; frozen core; relativity; Tamm-Dancoff Approximation turned on or off; and the ADF version used.

Pentacene

All the functionals, with the corresponding properties, that were used for pentacene, are listed in table 3.2.

From the results of these computations, the excitation energies are obtained. Furthermore, information about the exciton can be determined with additional software, as described in the next subsection.

	PBE	B3LYP	CAM- B3LYP	CAMY- B3LYP	MO6-2X
mon/dim	both	both	both	both	both
sing/trip	both	both	both	sing	both
Basis Set	DZP	DZP	DZP	DZP	DZP
Integ. Acc.	normal	normal	normal	normal	good
Frozen C.	small	none	none	none	none
Relativity	none	none	none	none	none
TDA	off	off	both	off	on
ADF	2014.08	2014.08	2016.01	2014.08	2014.08

Table 3.2: the functionals with their corresponding properties as used during the calculation of the excitation energies of pentacene. The row labels stand for monomer/dimer; singlet/triplet excitations; basis set; integration accuracy; frozen core; relativity; Tamm-Dancoff Approximation turned on or off; and the ADF version used.

3.3.2 Method 2: DFT with Different Functionals using Orca and TheoDORE

In the excited states of the tetracene dimer, it is interesting to know where the electron and the hole are located. The software package TheoDORE (Theoretical Density, Orbital Relaxation and Exciton analysis) provides a method to give a quantitative description of the electron-hole distribution over the molecules/segments, as well as a expectation value for the distance between the electron and the hole. Since the output from ADF cannot be parsed to be used with TheoDORE, a different DFT program is used to obtain the analysis.

ORCA is used to do comparable calculations to the previous ADF calculations, but has the additional benefit that its output can be analysed by TheoDORE. To do so, the Orca output is parsed into compatible data by cclib[42].

3.4 Results and Analysis

3.4.1 Tetracene Results

From the literature, we know what the energies of the first excited triplet and singlet state (T_{1} and S_{1}) are. The triplet state is 1.25 eV , the singlet state is 2.32 eV in crystal structure and 2.88 eV for the monomer[66]. All three values are relative to the ground state energy.

The T_{1} and S_{1} states for the different functionals are displayed in table 3.3.

	PBE	PBE (hq)		B3LYP	B3LYP (hq)	CAMY- B3LYP	CAM- B3LYP	CAM- B3LYP (TDA)

Table 3.3: the excitation energies of the corresponding states as calculated for the corresponding functionals with the settings as described in the method section of tetracene, section 3.3.1. All values for the excitation energies are in eV and are relative to the ground state energy. The excitation energies of the remaining four triplet and four singlet states are enclosed in Appendix B.1.

The data from TheoDORE for tetracene is enclosed in figure 3.1.

3.4.2 Tetracene Analysis

Monomer

For the monomer, the calculated energetic values for T_{1} are stable and accurate. The values never differ by more than 0.2 eV from the reference value. The range-separated functionals are also delivering stable and accurate values for S_{1}, again not differing by more than 0.2 eV from the literature value. The non range-separated functionals are having a more trouble determining S_{1}, underestimating the values by $0.4-0.7 \mathrm{eV}$.

Figure 3.1: Electron and hole localisation for tetracene, obtained by TheoDORE. The 2×2 squares display where the electron and the hole are. The bottom/top squares indicate that the electron is located at molecule A / B, whereas the left/right squares indicate that the hole is located at molecule A / B. Hence, $\operatorname{PBE}\left(S_{1}\right)$ is a charge-transfer state, where the electron is at molecule B and the hole is at molecule A. Likewise, CAM-B3LYP $\left(S_{2}\right)$ is mostly a local excitation at molecule B and $\operatorname{PBE}\left(S_{3}\right)$ is delocalised over the two atoms (molecule B is slightly more populated).

Dimer

The values for T_{1} are comparable to the values obtained for the monomer. Again, the difference with the reference value is never bigger than 0.2 eV . We can now determine further, how the electron and hole are distributed.

For the singlet states, one can decide how the electrons and holes are distributed over the two molecules using the TheoDORE software. Due to limitations in (combining multiple types of) software, TheoDORE can only be used on the PBE, B3LYP and CAM-B3LYP functionals. For PBE, the first two singlet excitations are charge transfer (CT) states. They are too low,
compared to the literature value. However, the first non-CT state, where the exciton is delocalised over the two molecules, is calculated to be at 2.37 eV . For B3LYP and CAM-B3LYP, the first non-CT states are at 2.66 eV and 3.02 eV , respectively. Further differences in the results are the localisation of the exciton. In PBE's results, it is almost evenly delocalised over the two molecules. For the results of CAM-B3LYP, the exciton is localised at one of the molecules for roughly 80%.

The analysis as performed by TheoDORE makes clear that the energetically lowest singlet states for the dimer are solely CT-states. However, one expects the CT-states to be higher in energy than the excited states without charge-transfer properties. For tetracene, this idea is backed by theoretical computations[76].

TheoDORE limits the possibilities of analysis to the singlet states. For these singlet states, the energy of the lowest non CT-states are underestimated by the PBE functional and also, albeit to a lesser extent, by the B3LYP functional. The CAM-B3LYP functional, on the other hand, slightly overestimates the energy of this non-CT singlet state. With values of respectively 1.30 eV and 1.88 eV , the PBE and B3LYP functionals are not even close to finding the right energies for the CT-states. The CAM-B3LYP functional however, gets a lot closer to a realistic value, with a CT-state energy of 2.87 eV . The exact energetic value to compare with is hard to determine, although it is likely that it is slightly higher than the S_{1} excitation. For instance, for pentacene the CT-state energy on a dimer is estimated to be 0.23 eV higher compared to the energy of the normal S_{1} state[38].

3.4.3 Pentacene Results

For pentacene, the excitation energies for a monomer are 0.86 eV for T_{1} and 2.3 eV for S_{1} [77, 29, 11]. In crystal structure, the excitation energy for S_{1} is $1.83 \mathrm{eV}[65]$. The results for the first singlet and triplet excited states for the monomer and the dimer are listed in table 3.4.

The TheoDORE analysis on the electron and hole makes clear that all of these three S_{1} states are CT-states. The first non CT-states are at $1.84 \mathrm{eV}, 2.11 \mathrm{eV}$ and 2.49 eV , for PBE, B3LYP

	PBE	B3LYP	CAMY- B3LYP	CAM- B3LYP	CAM-B3LYP (TDA)	M06-2X
T_{1} (mon)	0.93	0.71	N.A.	-0.90	0.95	N.A.
S_{1} (mon)	1.62	1.89	2.14	2.20	2.50	N.A.
T_{1} (dim)	0.72	0.62	N.A.	-0.96	0.89	0.70
$S_{1}(\operatorname{dim})$	0.78	1.28	1.89	2.06	2.17	2.04

Table 3.4: the excitation energies of the corresponding states as calculated for the corresponding functionals with the settings as described in the method section of pentacene, section 3.3.1. All values for the excitation energies are in eV and are relative to the ground state energy. The excitation energies of the remaining four triplet and four singlet states are enclosed in Appendix B.2.
and CAM-B3LYP, respectively.
All the useful data that are provided by Orca and TheoDORE, are enclosed in figure 3.2.

3.4.4 Pentacene Analysis

Monomer

The calculated values for the energy of the first excited triplet states are relatively stable, except for CAM-B3LYP when the TDA is not used. For the remaining functionals, T_{1} for B3LYP is the most inaccurate, but only 0.24 eV away from the literature value.

The energies of the monomer's S_{1} states tend to be underestimated by the software, with the PBE functional deviating the most, by 0.7 eV .

Dimer

For the dimer, things get more complicated. From literature, we know that the energies for the CT-state and first non-CT S_{1} excitation for a pentacene dimer are estimated to be 2.03 eV and 1.80 eV , respectively[38]. It is hard to tell how accurate these values are, but it does confirm the idea that the CT-state should not be the lowest in energy. Due to technical limitations by the TheoDORE package, only the singlet states can be analysed properly. For the singlet excitations, it becomes clear that the lowest calculated states are CT-states, just like we have seen with tetracene. The CT-states that are the lowest excitations according to PBE and

Figure 3.2: Electron and hole distribution for pentacene, obtained by TheoDORE. The 2×2 squares display where the electron and the hole are. The bottom/top squares indicate that the electron is located at molecule A / B, whereas the left/right squares indicate that the hole is located at molecule A / B. Hence, $\operatorname{PBE}\left(S_{1}\right)$ is a charge-transfer state, where the electron is at molecule A and the hole is at molecule B. Likewise, $\operatorname{B3LYP}\left(S_{3}\right)$ is mostly a local excitation at molecule A and CAM-B3LYP $\left(S_{2}\right)$ is delocalised over the two atoms (molecule B is slightly more populated).

B3LYP, are far too low. The question remains however, whether all the states are too low in energy, or if it is only the CT-states energies that are underestimated.

If we only take a look at the non CT-states, the S_{1} energy from the PBE functional, i.e. 1.84 eV , is closest to our reference values of 1.83 eV and 1.80 eV , obtained on crystal and dimers, respectively [65, 38]. The B3LYP and CAM-B3LYP functionals tend to overestimate the excitation energies for the S_{1} state in a pentacene dimer, while all three functionals are underestimating the energy of the CT-state.

3.5 Discussion

The results make clear that there are high error margins. However, due to the way the functionals are built, i.e. with trial and error, it is hard to specify the exact error that should be taken into account. The determined values for the energy in combination with the information that TheoDORE provides, suggests that especially the computed CT-states are quite unreliable. Nonetheless, one should also be careful with the interpretation of the non-CT states. The energies of these states differ less than the CT-state energies, but the localisation of the hole and the electron are not consistent over the results from the three different functionals.

3.6 Conclusion

For all the four situations, the calculations of the energetic value of T_{1} is relatively stable, with the error being 0.24 eV at most. For S_{1}, the calculations are less accurate. The rangeseparated functionals are doing well on the monomers, with $\mathrm{dE}<0.2 \mathrm{eV}$. For the dimers, the range-separated functionals are also doing relatively well, since the error is never bigger than 0.41 eV . The non range-separated functionals however, have big errors for both the monomers (up to 0.73 eV) and the dimers (up to 1.6 eV).

Analysis makes clear that the errors of the energy of the dimers are mostly caused by underestimations of the energy of the charge transfer states. Since the systems in the next chapter are bigger, the range-separated functionals are, in most occasions, computationally too expensive. Hence, one has to take the potential errors into account, especially in the charge-transfer state situations.

Chapter 4

Research Part II: Energy Transfer from Tetracene to Quantum Dot with Non-Adiabatic Molecular Dynamics

4.1 Introduction

4.1.1 Description

In this chapter we study the process of energy transfer of a triplet exciton located at tetracene, to a lead-sulphide quantum dot (PbS QD). In this introduction, we start by explaining what a quantum dot is. Thereafter, a summary is given of experimental research that has been done on this matter. Lastly, I describe what the objectives and outline of this chapter are.

4.1.2 Quantum Dot

Quantum dots (QD) are colloidal particles that are very interesting for fields with optoelectric purposes or applications. The first reason why QDs are interesting is that the optical and electronic properties, such as the band gap, are dependent of the particle size and can hence
accurately be tuned $[23,33]$.
The surfaces of the QDs are terminated by ligands that guarantee the solution processability of the QDs. Research has shown that these ligands also influence the optoelectric properties of the QDs. Experiments make clear that the energy levels of the quantum dots can be shifted significantly by changing the ligands[10]. Furthermore, the light absorption can be increased significantly by shortening the ligands[23]. QDs can be used as light-harvesting materials, but they have also succesfully been used as emissive acceptor materials, for energy transfer from singlet fission materials [64, 59].

4.1.3 Literature

The energy transfer process from triplet excitations to quantum dots has been observed in multiple experimental articles $[64,59]$. In this research, the aim is to computationally reproduce the triplet transfer from tetracene to PbS QDs, as observed in MIT's experiments[64]. A summary of the relevant parts of the article is provided, just after this introduction.

4.1.4 Objective

From the experimental results, we know that the energy transfer occurs within 10ns. In the research described in this chapter, the first aim is to reproduce the energy transfer observed in the described experiments. After this, the next step is to provide useful insights in the properties of, and the influences on the transfer process. Different methods of analysis are used to obtain information about the possible occurrence of quantum tunnelling, the adiabaticity of the process, the role of the charge-transfer states, the influence of the position of the tetracene with respect to the QD and the influence of the ligand.

4.1.5 Outline

In the next section, 4.2, the already mentioned experimentally observed energy transfer from tetracene to PbS QDs is summarised.

Hereafter, section 4.3 describes the theory behind the steps and algorithms that are specifically used in this chapter for the determination of the trajectories (molecular dynamics) and the surface hopping (FSSH, CPA and GFSH).

After this theory section, the method section, 4.4, gives an in-depth description of al the steps performed for obtaining the geometries, the trajectories and the surface hopping results.

In the next section, 4.5, the two used setups are described, as well as their behaviour over time. Thereafter, the results and analysis are enclosed (4.6). This includes an analysis of the coupling between tetracene and the quantum dot, and the influences of their mutual orientation hereon, as well as the simulations of the surface hopping process.

Naturally, this section is followed by a discussion (4.7) and a conclusion (4.8).

4.2 Experimental Research

The described process of singlet fission has been observed in multiple molecules. For the purpose of converting light into useable energy, the excited electrons need to be extracted from the singlet fission material. This chapter describes an overview of an experimental research performed at MIT by Thompson et al[64]. Herein, it is experimentally shown that energy transfer of triplet excitons from tetracene (the singlet fission material) to lead sulphide (PbS) quantum dots (the acceptor material) is possible, and dependent of ligand and/or intermolecular distance. All mentioned data, formulas and figures of this chapter refer to the cited MIT article.

In the first part of the research, the excitation spectrum of a thin film of PbS nanocrystals coated with a 20 -nm-thick film of tetracene is measured. Near-infrared emission is detected after exciting the tetracene layer. The presence of energy transfer from tetracene to PbS can be confirmed, since the peaks in the PbS excitation spectra appear at the same energies as in the absorption spectra of tetracene.

For the next step, the wavelength-dependent quantum yield of photons from the nanocrystal is used,

$$
\begin{equation*}
\operatorname{QY}(\lambda)=\operatorname{QY}_{\mathrm{NC}}\left(\frac{\operatorname{ABS}_{\mathrm{NC}}(\lambda)+\eta_{\mathrm{fis}} \eta_{\mathrm{ET}} \mathrm{ABS}_{\mathrm{Tc}}(\lambda)}{\operatorname{ABS}_{\mathrm{NC}}(\lambda)+\mathrm{ABS}_{\mathrm{Tc}}(\lambda)}\right) \tag{4.1}
\end{equation*}
$$

Herein, $\mathrm{ABS}_{\mathrm{NC}}$ is the absorption of the nanocrystal, $\mathrm{QY} \mathrm{NC}_{\mathrm{NC}}$ is the intrinsic quantum yield of the nanocrystal, $\mathrm{ABS}_{\text {Tc }}$ is the absorption of the tetracene, $\eta_{\text {fis }}$ is the yield of excitons in tetracene after singlet exciton fission and $\eta_{\text {ET }}$ is the exciton transfer efficiency from tetracene to the nanocrystal. Fitting this function to the measured curve provides a value for $\eta_{\mathrm{fis}} \eta_{\mathrm{ET}}=$ 1.80 ± 0.26. The fact that $\eta_{\text {fis }} \eta_{\text {ET }}$ is greater than one proofs that the energy transfer is dominated by triplet excitons, since efficient triplet generation by singlet fission is the only explanation if more excitons are transferred than there are photons absorbed.

During the process, multiple ligands are used to passivate the surface of the nanocrystal. The

Figure 4.1: MIT's figure, showing a distinct correlation between the energy transfer efficiency and number of carbon-carbon single bonds in the nanocrystal ligand. The diagonal line is an exponential fit on the data, and the vertical bars represent the estimated uncertainty.
ligands vary in length, from oleic acid (OA, the longest), to caprylic (octanoic) acid (CA, the shortest). Figure 4.1 shows the energy transfer efficiency as a function of the ligand length, measured in terms of the number of single carbon-carbon bonds. This figure makes clear that there is a direct correlation between the length of the ligand on the quantum dot, and the efficiency of the energy transfer. The question remains however, whether it is the ligand itself, the increased intermolecular distance, or a combination of the two, which causes the decrease
of efficiency.

4.3 Theory

4.3.1 Introduction

In this section, all the theoretical approaches and background that have not yet been mentioned but are relevant for this chapter, are written out in detail. This section is divided into subsections describing (the background of) the different methods that were used.

The subsections are in the same order as in the research. Hence, first the process of molecular dynamics is explained. The next step is the simulation of energy transfer over time, of which the theory is described in three subsections.

The first of these last three subsections describes the general theory behind the fewest-switches surface hopping method (FSSH). The next subsection explains what the classical path approximation is, which can be used in combination with FSSH. The last subsection describes a method called global flux surface hopping, which is a modification of FSSH that allows transitions trough higher-lying states.

4.3.2 Molecular Dynamics

If one wants to simulate the movement of atoms over time, molecular dynamics (MD) is a relatively simple but reliable method to do so.

The most basic system of MD is purely mechanical and contains N atoms, in a fixed volume V, with an energy $E=T+E_{p}$. Herein, the kinetic energy T is the sum of the classical kinetic energy of all individual atoms $\left(\frac{1}{2} \sum_{i} m_{i} v_{i}^{2}\right)$ and E_{p} is the interatomic potential energy. Such a system with fixed volume is called a microcanonical ensemble, or NVE.

The equation of motion can be determined by the Verlet algorithm, as[22, 17]:

$$
\begin{equation*}
\mathbf{R}_{i}(t+\delta t)=2 \mathbf{R}_{i}(t)-\mathbf{R}_{i}(t-\delta t)+\frac{\delta t^{2}}{M_{i}} \mathbf{f}_{i}(t)+\mathcal{O}\left(\delta t^{4}\right) \tag{4.2}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{V}_{i}(t)=\frac{1}{2 \delta t}\left[\mathbf{R}_{i}(t+\delta t)-\mathbf{R}_{i}(t-\delta t)+\right]+\mathcal{O}\left(\delta t^{3}\right) \tag{4.3}
\end{equation*}
$$

Alongside of the Verlet algorithm, there is an other algorithm that is equivalent to it, which is called Velocity Verlet[22, 17]:

$$
\begin{align*}
\mathbf{V}_{i}(t+\delta t) & =\mathbf{V}_{i}(t)+\frac{\delta t^{2}}{2 M_{i}}\left[\mathbf{f}_{i}(t)+\mathbf{f}_{i}(t+\delta t)\right] \tag{4.4}\\
\mathbf{R}_{i}(t+\delta t) & =\mathbf{R}_{i}(t)+\delta t \mathbf{V}_{i}(t)+\frac{\delta t^{2}}{2 M_{i}} \mathbf{f}_{i}(t) \tag{4.5}
\end{align*}
$$

In the four above-mentioned equations, \mathbf{R}_{i} denotes the place of atom $i, \mathbf{V}_{i}=\dot{\mathbf{R}}_{i}$ the velocity of atom i, \mathbf{f}_{i} the forces on atom i and M_{i} the mass of atom i. These algorithms are, despite its simplicity, efficient, numerically stable and furthermore conserve energy quite well.

For systems that keep the energy constant, instead of the volume, there are some slight adaptions needed in the algorithms. Such a system, called Canonical ensemble or $N V T$, obeys a relation between temperature and the expectation value of the kinetic energy[22, 17]:

$$
\begin{equation*}
\left\langle\sum_{i=1}^{N} \frac{\mathbf{P}_{i}^{2}}{2 M_{i}}\right\rangle_{N V T}=\frac{3}{2} N k_{B} T \tag{4.6}
\end{equation*}
$$

with k_{B} the Boltzmann constant. To obey this formula, and hence keep the system at a constant temperature, one can add velocity rescaling to the algorithm. Herein, the velocities are rescaled every time the temperature deviates from the correct value by more than the threshold value. There are alternatives to velocity rescaling, such as adding a thermostat at the edges simulating a thermal bath, but they are not discussed in this thesis since they are not used.

4.3.3 Fewest-switches surface hopping

This section gives an overview of the fewest-switches surface hopping method (FSSH), and is, unless stated otherwise, citing to the Supporting Information of the main PYXAID article, [1]. In FSSH, the influences of deterministic (TD-SE) and stochastic factors are combined to simulate a time-evolving electron-nuclear system over multiple trajectories.

At every time step, the probability for the electron to hop from a certain state i to another
state j is calculated. This probability can be written out as

$$
\begin{equation*}
P_{i \rightarrow j}(t, d t)=\int_{t}^{t+d t} \frac{2}{c_{i}^{*}(t) c_{i}(t)} \operatorname{Re}\left[\left(\frac{i H_{i j}}{\hbar}\right) c_{i}^{*}(t) c_{j}(t)\right] d t=\frac{2}{\hbar} \int_{t}^{t+d t} \frac{R e\left[d_{i j} c_{i}^{*}(t) c_{j}(t)\right]}{c_{i}^{*}(t) c_{i}(t)} d t \tag{4.7}
\end{equation*}
$$

Herein, c_{i} and c_{j} and their conjugates are part of the density matrix, as

$$
\begin{equation*}
\rho_{i j}(t)=c_{i}^{*}(t) c_{j}(t) \tag{4.8}
\end{equation*}
$$

In the case that the computed probability $P_{i \rightarrow j}$ is negative, it is changed to zero. The probability of staying in the same state i can hence be denoted as

$$
\begin{equation*}
g_{i \rightarrow i}(t)=1-\sum_{j \neq i} g_{i \rightarrow j}(t), \text { where } g_{i \rightarrow j}(t)=\max \left(0, P_{i \rightarrow j}(t)\right) . \tag{4.9}
\end{equation*}
$$

The first part of the name FSSH, "fewest switches", thanks its name to the fact that the number of hops is minimised. This is due to the FSSH probabilities being related to the flux of the populations of states, and not to the actual state populations, resulting in a minimisation of switches.[67]

So far, all factors were deterministic. In the last step, the stochastic factor is introduced by a random number $\xi \in[0,1]$. This ξ is compared to the probabilities to determine the next state j, which meets the requirement

$$
\begin{equation*}
\sum_{k=0}^{j-1} g_{i \rightarrow k}(t)<\xi \leq \sum_{k=0}^{j} g_{i \rightarrow k}(t) . \tag{4.10}
\end{equation*}
$$

4.3.4 Classical path approximation

The FSSH method can be updated to work within the Classical Path Approximation (CPA). CPA is valid under the assumption that the electronic dynamics are driven by the nuclear dynamics, and the nuclear dynamics are unaffected by the dynamics of the electronic degrees of freedom. Hence, this requires an absence of reorganisation, fragmentation, isomerisation and other significant structural changes under electronic excitations.[1]

In original FSSH, conservation of the total energy of the system is obtained by rescaling the velocity vectors of all atoms. Within FSSH-CPA, a different rescaling technique is used. Instead of the velocity, the transition probabilities are scaled, but only for energetically unfavourable transitions:

$$
\begin{gather*}
g_{i \rightarrow j}(t) \rightarrow g_{i \rightarrow j}(t) b_{i \rightarrow j}(t) \tag{4.11}\\
b_{i \rightarrow j}(t)= \begin{cases}\exp \left(-\frac{E_{j}-E_{i}}{k_{B} T}\right) & E_{j}>E_{i} \\
1 & E_{j} \leq E_{i}\end{cases} \tag{4.12}
\end{gather*}
$$

For these energetically unfavourable transitions, the scaling correction is the Boltzmann factor, in which k_{B} is the Boltzmann constant and T is the temperature.[1]

4.3.5 GFSH

In the previously described sections, the mechanism of FSSH is explained. An alternative for the simulation of surface hopping is an algorithm called global flux surface hopping (GFSH) [71]. This method is based on the same principles as FSSH, but it handles the hopping probability for classically forbidden transitions differently. These classically forbidden transitions cannot and should not be fully avoided, since the avoidance would create an unrealistic unbalance in the surface hopping simulations[43, 44]. The difference between FSSH and GFSH can be found in dynamical processes such as superexchange, where two states are indirectly coupled trough an intermediate state with higher energy. An example hereof is the singlet fission process as described in section 2.1.6, where the higher-lying charge transfer states play a key role, but are hardly populated[56, 8, 2, 7]. Hence, these hops would be forbidden in FSSH, but GFSH allows these transitions by altering the hopping probability[71]. Although singlet fission is not the process that is simulated in this research, GFSH will turn out to be useful. After all, the process to be simulated is a dexter energy transfer, between two states that are not directly coupled.

The major difference between FSSH and GFSH lies in the surface hopping probabilities. The entire set of quantum states is divided into two subgroups of states. This results in groups A
and B , i.e. one with reduced population and the other with increased population, respectively. Then, the hopping probability can be written as[71]:

$$
\begin{equation*}
g_{i \rightarrow j}=\frac{\Delta \rho_{j j}}{\rho_{i i}} \frac{\Delta \rho_{i i}}{\sum_{k \in A} \rho_{k k}}(\text { if } i \in A \text { and } j \in B), \tag{4.13}
\end{equation*}
$$

herein, the population change of a quantum state is defined as

$$
\begin{equation*}
\Delta \rho_{i i}=\rho_{i i}(t+\Delta t)-\rho_{i i}(t) . \tag{4.14}
\end{equation*}
$$

After a surface hop, the energy is conserved in the same way as in FSSH.

4.4 Method

4.4.1 Introduction

For this part of the research, two different setups are analysed. For both setups, the same method is used. The order of the steps as performed in the research are

1. Starting geometry determination with CP2K (4.4.2)
2. Trajectory Calculation using MD by CP2K (4.4.3)
3. Recalculation of Hamiltonians and coupling with QMWorks (4.4.4)
4. Simulation of the Energy Transfer with PYXAID. (4.4.5)

The next subsections each describe a part of the method.

4.4.2 Starting geometry determination with CP2K

As a first step in the process, the starting geometry of the setup is determined. The facets of the PbS QD are terminated for fifty percent with hydrogen atoms and for the other fifty
percent with ligands. The ligands are distributed over the facets in a realistic and natural, and thus irregular, way, determined by in-house calculations for different research topics[23]. For efficiency reasons, the actual ligands are only placed on the facet close to the tetracene, the other ligands are kept as short as possible, i.e. a COOH termination. For different setups, the same ligand placement is used, to make sure that the ligand length is the only variable changing.

After the placement of the ligands, the tetracene is placed close to the facet with the actual ligands. The distance of the tetracene is chosen arbitrarily, in such a way that the distance is big enough to prevent bondings between the ligand and the tetracene, and at the same time small enough to encourage the transfer of the electrons.

After each described step, a geometry optimisation is run within CP2K, with the PBE functional. The last geometry optimisation furthermore checks, and possibly corrects, whether the intermolecular distance was chosen properly.

4.4.3 Trajectory Calculation using MD by CP2K

The geometry of the first point in time is determined in the previous subsection. For calculation of the remainder of the trajectory, the MD method as described in 4.3.2 is used. The computations are performed by the CP2K package, where the temperature is fixed at 300 K , and multiple picoseconds are simulated, in steps of 1 fs .

In the trajectory, the starting point comes from a geometry optimised situation, and hence represents 0K. Therefore, the energy of the system starts low, and increases to a height where it stabilises. This 'warming up'-part, where the energy is not constant, is removed and thus not used in any of the remaining steps.

4.4.4 Recalculation of Hamiltonians and coupling with QMWorks

After the determination of the trajectory, the Hamiltonians need to be recalculated, due to technical incompatibilities. For this purpose, a python package called QMWorks-NAMD is
developed within the research group. Herein, the implementation of the computations of the non-adiabatic coupling is based on a method as used by Plasser et al[49].

4.4.5 Simulation of the Energy Transfer with PYXAID

The PYXAID package, which theory is described in sections 4.3.3-4.3.5, is used for the energy transfer simulation, using FSSH or GFSH. In this part, the relevant states are included, forming the active space. The energy levels of the states can be adjusted, to be closer to reality. The shifting of the energy happens in groups. The local excitation (LE) at tetracene is one group. The LE's on the PbS QD together form another group, and the last group contains al the CT-states. The energies of these groups are shifted relatively to each other.

The number of HOMO's and LUMO's that are included in the active space is determined by the alignment of the energy of the orbitals over time, which gives an indication for the relevant orbitals for the energy transfer process.

The simulations starts with a local excitation at the tetracene molecule. From there on, a thousand runs are performed over the longest available reliable part of the trajectory. The population of the states is averaged over these one thousand runs.

There are multiple settings that can manually be adjusted. One of them is the energy of the states. For both setups, eight different simulations are run, with the following settings:

1. FSSH with unchanged energy levels
2. FSSH with Tc LE lowered to 1.25 eV , and PbS band gap lowered to 1.0 eV , not changing the energy of the CT-states
3. FSSH with Tc LE lowered to 1.25 eV , and PbS band gap lowered to 1.0 eV , increasing the energy of the CT-states with 0.2 eV
4. FSSH with Tc LE lowered to 1.25 eV , and PbS band gap lowered to 1.0 eV , increasing the energy of the CT-states with 0.4 eV
5. GFSH with unchanged energy levels
6. GFSH with Tc LE lowered to 1.25 eV , and PbS band gap lowered to 1.0 eV , not changing the energy of the CT-states
7. GFSH with Tc LE lowered to 1.25 eV , and PbS band gap lowered to 1.0 eV , increasing the energy of the CT-states with 0.2 eV
8. GFSH with Tc LE lowered to 1.25 eV , and PbS band gap lowered to 1.0 eV , increasing the energy of the CT-states with 0.4 eV

4.5 Setups

4.5.1 Preparation: approximating the charge-transfer state energies

As a preparation to the main research, the tetracene and the QD have already been investigated in previous chapters. This led to useful results, providing insight in the orbitals and the energy of certain states. Furthermore, multiple experimental studies provide benchmarks for energies of excitations localised at tetracene, as well as the band gap of the PbS QD.

However, there is one type of state of which we do not know the energy beforehand. These are the charge-transfer states, in which only one electron has transferred, resulting in charged setups, i.e. $\mathrm{Tc}^{+} \mathrm{PbS}^{-}$or $\mathrm{Tc}^{-} \mathrm{PbS}^{+}$.

A simple but rough approximation for the CT-state energy, can be calculated by[69]

$$
\begin{equation*}
E_{C T}=E_{c a t}+E_{a n}-\frac{k e^{2}}{\epsilon r} \tag{4.15}
\end{equation*}
$$

The last term describes a coulombic correction for the attraction between the charges. Herein, k is the coulomb constant, e is the charge that is separated and r is the separation distance. $E_{C T}, E_{c a t}$ and $E_{a n}$ are the energies of the CT, cationic and anionic system, with respect to the ground state energy, respectively. For the $\mathrm{PbS}-\mathrm{Tc}$ system, this separation distance should have a value ranging from the shortest surface-to-surface QD-Tc distance (as a minimum) and the centre-to-centre QD-Tc distance (as a maximum distance).

For the initial geometry of the tetracene and PbS QD terminated by the shortest ligand, the CT-state energy is approximated to be 3.31-3.71 eV above the ground state energy, depending on chosen separation distance. The calculations of $E_{a n}$ and $E_{c a t}$ are performed with CP2K DFT/PBE/DZVP.

One should be aware of the roughness of such an approximation. In comparable calculations on smaller systems with reference CT-state energies, the approximated CT-state was on the low side. For the QD-Tc system however, the CT-state energy appears to be quite high, compared to the local excitations. Consequently, the energy of the CT-state is confirmed to be reasonably higher than the local excitation energies, but the precise CT-state energy remains rather indefinite.

4.5.2 Different ligands

One of the aims was to get insights in the possible influences of the ligand used on the PbS QD . Hence, the ligand length is varied in the same way as the experimental article. The consequence is that for every ligand, a unique path has to be determined with an MD simulation. Since an MD simulation for such a setup is very time-consuming, time limited the number of setups to two. In the first setup, the QD is terminated for 50% with heptane (7 carbon atoms). The second setup is terminated with nonane (9 carbon atoms) at the same positions. The other 50% are terminated with formic acid. The positions of the ligands were determined by a simulation run within the Theoretical Chemistry group of the VU.

Setup I

The first setup is for 50% terminated by ligands containing 7 carbon atoms. This setup is from now on referred to as 'Setup 7C'. An image of the initial setup is shown in figure 4.2. During the dynamics, the tetracene molecule slowly drifts away from the QD. For the entire simulated period, the distance, angles and curvature of the tetracene are determined. There are two distances determined, the center-to-center QD-Tc distance and the center-to-closest-facet

Figure 4.2: the geometry of the PbS QD with the heptane ligands at the relevant facet and the tetracene chromophore close to this facet. Picture taken at the first useful point in time.

QD-Tc distance. Out of the possible three angles, two are determined to be relevant. The first one represents the angle between the normal of the QD top facet and the longest axis of the Tc molecule (between the center of the two outer rings, through the two inner rings). This angle will from now on be referred to in figures as 'angle'. Since this angle is between the normal of the facet and the tetracene axis, when the tetracene is perpendicular to the QD facet, the angle is 0° and it is 90° when the two are parallel.

The second angle, which from now on we will call 'rotation', describes the rotation of the tetracene around its longest axis, oriented with respect to the QD. Hence this rotation is the angle between the normal of the QD top facet and the line through the C-C bond that unites the second and third carbon ring of tetracene. Again, the normal of the plane is taken, which means that a parallel tetracene molecule and QD top facet results in 90°, whereas 0° stands for a perpendicular situation.

The remaining third angle describes the rotation of Tc around the normal vector of the QD top facet. For symmetry reasons, this angle is not analysed.

The curvature of the Tc molecule is described by the parabolicity of the curve fitted trough tetracene surface, over the longest axis. Thus, this is the a in $y=a x^{2}+b x+c$, which is zero for a straight line.

The distances, angles and curvature for the trajectory of the setup with the shorter ligand are displayed in figure 4.3.

Figure 4.3: the behaviour of the orientation of the tetracene molecule with respect to the quantum dot (terminated with the 7 C -ligand), for the entire trajectory.

Setup II

The second setup has the same initial coordinates as Setup I, with the addition of extra H and C atoms at the ligand ends, to extend the ligands from 7 C to 9 C . The results of the MD simulation are displayed in figure 4.4, using the same variables as for the first setup (figure 4.3).

Figure 4.4: the behaviour of the orientation of the tetracene molecule with respect to the quantum dot (terminated with the 9C-ligand), for the entire trajectory.

Setup I vs Setup II

The most obvious difference between the trajectories of the two setups, is the separation between the QD and Tc . In the second setup, the Tc molecule moves away faster from the PbS QD. The most reasonable explanation is that the longer ligand results in a bigger expected value for the intermolecular distance. This behaviour is in line with the assumption of a relation between ligand length and intermolecular distance, made in the article describing the experimental research on the same matter[64].

In the two setups, the tetracene chromophores do not rotate in the same way, but this should not be of any influence for the results or analysis.

Furthermore, there is a slight difference in the way the tetracene bows over time. The curvature of the chromophore reaches higher values for the setup with the longer ligand. We have not found a clear explanation or cause for this difference.

4.6 Results and analysis

4.6.1 Hamiltonian Results

Real part: energy eigenvalues

After the calculation of the trajectories, the Hamiltonian files are known. The data of these files provides some insights in the behaviour of the orbitals over time. The real part of the Hamiltonian represents the energetic eigenvalues of the molecular orbitals. Herein, the alignment of the orbitals belonging to tetracene with respect to the PbS -orbitals can be seen. Figure 4.5 displays the real part of the Hamiltonians of 30 HOMOs and 30 LUMOs for Setup 7C, over time.

Figure 4.5: the molecular orbitals (30 HOMOs and 30 LUMOs) over time for Setup 7C. Due to computational difficulties, the program sometimes has problems following the same state, causing incorrect jumps between orbitals.

In this graph, the top HOMO, that starts black and ends purple, represents tetracene's HOMO. However, it should clearly not change color. The reason that this happens is that the software is not (always) able to keep track of which orbital is which, when they cross. At this moment, there is no solution to avoid this jumping.

The LUMO that belongs to tetracene switches even more often. It starts as the fifth LUMO in purple, then switches to cyan at 527 , to purple at 1397 , to blue at 2147 and back to purple at 3875.

These jumps cause trouble for the simulations of the energy transfer. Therefore, we have to stick to the parts of the trajectory where there are no jumps between the orbitals of interest.

For the surface hopping simulations, the chosen trajectory is between 2980fs and 3860fs.
In the same way, the energy of the orbitals for Setup 9C are determined. Figure 4.6 shows the
behaviour of the energy of the orbitals over time.

Figure 4.6: the molecular orbitals (50 HOMOs and 50 LUMOs) over time for Setup 9C. Due to computational difficulties, the program sometimes has problems following the same state, causing incorrect jumps between orbitals.

This figure makes clear that the Tc HOMO is most of the time not close to the PbS HOMOs, whereas the Tc LUMO is well within the conduction band of the QD. For an unknown reason, there is a number of inexplicable transitions between the orbitals that should not be there. Luckily, the number of time points with inexplicable transitions is lower than for Setup 7C. For the surface hopping calculations of Setup 9C, the timeframe from 1150fs to 3000fs is used.

Imaginary part: coupling

The complex parts of the Hamiltonian represent the coupling. This coupling defines how well two molecular orbitals are coupled with respect to each other. The complex Hamiltonian array
consists of the coupling of all the orbitals with all the other orbitals. For energy transfer, the electron on the Tc LUMO has to hop to one of the PbS LUMOs, and the hole on the Tc HOMO has to hop to one of the PbS HOMO's, which is equivalent to an electron hopping from one of the PbS HOMO's to the Tc HOMO. These Dexter energy transfer obeying combinations of coupling are the coupling values that are relevant. Hence, in figure 4.7, two (sums of) couplings are visualised. The first one is the sum of the coupling of the Tc LUMO with all of the PbS LUMOs. The second line represents the sum of the coupling of the Tc HOMO with all of the PbS HOMOs. At the time points where two orbitals were mixing, it is sometimes hard to determine exactly which is the orbital corresponding to tetracene. One does not want to accidentally include the coupling between two PbS-orbitals, since it is relatively high. To make sure that there is no $\mathrm{PbS}-\mathrm{PbS}$ coupling in the sum, the sum at the switching points is simplified to solely include the coupling between the two states that are switching. Hence, even at the switching time point, one of those two orbitals belongs to the tetracene molecule. In figure

Figure 4.7: the coupling of the Tc LUMO with all the PbS LUMOs (in black) and the coupling of the Tc HOMO with all the PbS HOMOs in red for Setup 7C.
4.8, the coupling is visualised over time in the same way as for Setup 7C. Hence, one line
corresponds to the sum of the coupling between the Tc HOMO and all the PbS HOMOs and the other line corresponds to the sum of the coupling between the Tc LUMO and all the PbS LUMOs.

Figure 4.8: the coupling of the Tc LUMO with all the PbS LUMOs (in black) and the coupling of the Tc HOMO with all the PbS HOMOs in red for Setup 9C.

Apart from the summing, these coupling values are unmodified. Both coupling figures are bumpy. There are narrow peaks at the points where the coupling is high, but there is hardly any average coupling values; it is either maximum coupling or (almost) no coupling. This makes it hard to easily find a correlation between the coupling and one or more of the trajectory variables. In the next subsection, 4.6.2, a closer look is taken at the coupling in combination with these variables.

In figure 4.7 of Setup 7C, the coupling is relatively steady over time. The density of the peaks changes somewhat, but the height of the peaks stays the same. There is one outlier in the HOMO-HOMO coupling at the start of the trajectory, reaching a value of 578 meV . We could not find a clear explanation for this coupling being so high.

Furthermore, there are more coupling peaks for the LUMO-LUMO coupling than for the HOMO-HOMO coupling. The most likely explanation for this difference is that the Tc LUMO is in the band of the PbS , whereas the Tc HOMO is slightly above the PbS HOMOs.

Figure 4.8 of Setup 9C, makes clear that the coupling is a lot weaker. In the beginning the LUMO-LUMO coupling has clear peaks, but they vanish over time. The reason behind this disappearance of coupling could be the rapidly increasing distance over time (figure 4.4), which will be analysed in the next subsection (4.6.2).

The coupling of the Tc HOMO with the PbS HOMOs stays rather low for the entire trajectory. This is likely caused by the energetic gap between the Tc HOMO and the PbS HOMOs.

4.6.2 Hamiltonian analysis

General

The Hamiltonians contain a lot of valuable information. It is interesting to find out whether a certain angle or distance between the Tc and PbS QD provides a higher coupling. Since the complexity of the coupling data, caused by the peaks as well as by the number of (potential) variables having influence, the structure of the data is modified. Each variable is divided into 10 or 20 bins over the range of the corresponding variable. This is done linearly, so that all bins have the same size. After this, the coupling values are appointed to the bin where they belong, based on this single variable. For every bin, the containing coupling values are averaged. This forms a dataset for each orientational variable: distance, rotation, curvature.

This analysis of the orientational variables combined with the coupling is followed by a spectral density analysis of the orbitals. This is calculated as the Fourier transform of the normalised autocorrelation function of a pair of molecular orbitals over a reliable range of time in the MD trajectory.

Distance

The first variable to be analysed is the distance between the two molecules. For Setup 7C, figure 4.9 suggests that the closest intermolecular distance influences the coupling. Even though the range of the distance, i.e. the range of the x -axis, is rather small, there is a negative trend visible. To keep the figure clear, a line is used instead of a histogram type of figure.

Figure 4.9: the coupling of setup 7C averaged per closest intermolecular distance bin, one set of 10 bins (solid lines) and one set of 20 bins (dashed lines); the number of coupling values belonging to a bin is displayed at the top (for 20 bins) and bottom (for 10 bins) of the figure.

The above figure is based on the smallest distance between atoms of PbS and Tc . In figure 4.10, the averaged coupling is plotted against the distance between the center of Tc and the center of the PbS facet that is terminated with ligands.

Figure 4.10: the coupling of setup 7C averaged per distance bin, one set of 10 bins (solid lines) and one set of 20 bins (dashed lines); the number of coupling values belonging to a bin is displayed at the top (for 20 bins) and bottom (for 10 bins) of the figure.

In this figure, it is hard to find a trend between the distance and the coupling. The combination of the two above graphs suggests that it is not the distance from the tetracene to the quantum dot self that is important, but the distance between the tetracene and the closest ligand on the quantum dot. For Setup 9C, the same type of analysis can be done. However, due to the absence of a variety of coupling peaks, the bin-sorted data for Setup 9C does not make any sense. For completeness, these figures for Setup 9C are included in Appendix C, but one should be aware that the analysed signal might be closer to noise than to reliable data.

Rotation

The next interesting variable is the orientation, in terms of rotation of the tetracene molecule with respect to the QD. In figure 4.11, the bins for the variable 'rotation' are plotted. The rotation describes the rotation of the tetracene around its longest axis, where a rotational value of 0° describes a perpendicular situation, and hence 90° means the facet and tetracene are parallel.

Figure 4.11: the coupling of setup 7C averaged per rotational bin, one set of 10 bins (solid lines) and one set of 20 bins (dashed lines); the number of coupling values belonging to a bin is displayed at the top (for 20 bins) and bottom (for 10 bins) of the figure.

Based on the shape of the curves in figure 4.11, it is hard to find a relation between the coupling and the rotation. There is no clear trend visible, and the curve is unexplainable bumpy.

Next to the rotation around the longest tetracene axis, there is another rotational variable which I denote as angle. It is the angle between the longest axis of the tetracene and the normal of the closest QD facet. A first look at figure 4.12 makes clear that the left half of the figure has a higher averaged coupling than the right side of the figure. Hence, one could conclude that the coupling is better in a diagonal situation $\left(45-65^{\circ}\right)$ than in a parallel position $\left(80-90^{\circ}\right)$. However, one has to be cautious. The trajectory results in an enormous sample over spacial variables. However, these variables, such as distance and angle might be entangled, in such a way that for instance the parallel/perpendicular angle only occurs at small/big distance. Taking a look at the average intermolecular distance per angular bin, the distance is roughly equal for the bins in the range of 55° to 90°, with values between $4.8 \AA$ and $5.8 \AA$. However, the average intermolecular distance when the angle is between 45° and 52°, is $2.6 \AA$. This could be a reason for the most left bins having higher average coupling, but it does not explain the average coupling peaks around $60^{\circ}-65^{\circ}$.

Figure 4.12: the coupling of setup 7C averaged per angular bin, one set of 10 bins (solid lines) and one set of 20 bins (dashed lines); the number of coupling values belonging to a bin is displayed at the top (for 20 bins) and bottom (for 10 bins) of the figure.

Again, for the data of Setup 9C, the graphs are enclosed in Appendix C, but they are considered irrelevant due to the lack of coupling during the trajectory.

Curvature of tetracene

As a last variable that might play a role in the coupling, is the curvature of the tetracene. Tetracene's parabolicity is determined as the measure for the curvature of the molecule. Hence, a value of 0 means an entirely flat molecule, whereas values of higher absolute values correspond to a highly bowed molecule. The bins for different values of parabolicity are displayed in figure 4.13. In figure 4.13, the absolute values of the parabolicity are used, since there is no difference between positive and negative values due to symmetry. The figure has two or three peaks for the coupling between the LUMOs. The first peak is close to zero, which corresponds to a straight, unbowed, tetracene molecule. The second peak is roughly at a parabolicity of 0.010 , which is 2 to 3 meV higher than the lowest average couplings between the LUMOs. The average intermolecular distance does not differ significantly between the bins, i.e. between 2.65 and $3.45 \AA$. Furthermore, the bins with the highest average intermolecular distance do not have the

Figure 4.13: the coupling of setup 7C averaged per parabolicity-bin, one set of 10 bins (solid lines) and one set of 20 bins (dashed lines); the number of coupling values belonging to a bin is displayed at the top (for 20 bins) and bottom (for 10 bins) of the figure.
lowest average coupling. Hence, the peaks are not caused by a difference in distance. However, this does not mean that the conclusion is that at certain curvatures of the molecule, the coupling is significantly higher. The differences in average coupling are relatively small. The difference in range is less than 5 meV and combining this knowledge with the number of datapoints, we can not rule out that the differences are caused by coincidence.

Spectral Density

Besides the coupling, the energy of the molecular orbitals also contains valuable information. The spectral density can be determined from these energy values. The spectral density for the LUMO of tetracene and the PbS LUMO is displayed in figure 4.14. The peeks in the region $200-400 \mathrm{~cm}^{-1}$ make clear that slow vibrations with low frequency play an important role of the correlation between the orbitals of the tetracene and the quantum dot. Since these vibrations are really slow, they likely take place in the quantum dot. Over the relevant combinations of orbitals, the height, energy and number of these low energy peeks varies slightly, but they never leave the energetic region between 200 and $400 \mathrm{~cm}^{-1}$.

Figure 4.14: The energy levels of the Tc LUMO and PbS LUMO (top, red and blue respectively), the normalised autocorrelation function between these two (middle), and the spectral density (bottom). The last is calculated as the Fourier transform of the Normalised AUF.

The other peek, at $1385 \mathrm{~cm}^{-1}$, is the same for all relevant combinations of orbitals. This peek is more interesting, since it describes which phonon plays an important role in the correlation between the donor and acceptor states. With frequency calculations in $\operatorname{ADF}[62,19,5]$ on the tetracene molecule and the ligand, it can be determined which vibration belongs to the frequency of $1385 \mathrm{~cm}^{-1}$. The momentum of the vibration is drawn in figure 4.15.

Figure 4.15: the direction of movement of the vibration that plays a role in the correlation between the tetracene and quantum dot states. The movement goes back and forth over the yellow arrows, starting in the directions drawn.

4.6.3 Energy transfer results

Setup 7C: FSSH

For Setup 7C, the chosen timeframe is from 2980fs and 3860fs. The simulation of the surface hopping with the FSSH algorithm and no changes to the energy level, is enclosed in figure 4.16.

Figure 4.16: the surface hopping simulated over time for Setup 7C. The FSSH-algorithm is used, with unaltered energy levels, i.e. $E_{L E(T c)}=1.595 \mathrm{eV}$ and the bandgap of PbS is 1.459 eV . The energy of the lowest charge transfer state is 1.318 eV . All energetic values are averaged over the time of the relevant trajectory.

Figure 4.16 makes clear that the CT-states are populated over time, but none of the states localised at PbS are populated. The most obvious reason is that the CT-states are the lowest in energy, which therewith makes it the most likely state to be populated.

As a logical next step, the energy levels are altered to more realistic values. The average PbS bandgap is lowered to 1.0 eV and the average energy of the excited state at tetracene is lowered to 1.25 eV . As described in section 4.5.1, it is hard to determine the energy of the CT-states, but it is save to conclude that they are reasonably higher than the locally excited states. Therefore, multiple simulations are performed, with different energies for the CT-states. The energy of the CT-states is increased with $0 \mathrm{eV}, 0.2 \mathrm{eV}, 0.4 \mathrm{eV}$.

Of those three energy configurations, only the first (PbS 1.0 eV ; Tc 1.25 eV ; CT 1.3 eV) shows some energy transfer, albeit very little. In 1000 simulations, only one run shows energy transfer. Hence, assuming continuation at the same pace, this would mean that 90% of the energy transfer is completed after 1.2 ns. One has to note that the CT-state energy is still likely to be smaller than in reality.

The other two of the three energy configurations (PbS 1.0 eV ; Tc 1.25 eV ; CT 1.5 or 1.7 eV),
are probably closer to reality. However, no CT is observed at all in the 2000 runs that these two simulations jointly performed. Hence, it is a logical next step to change the SH-algorithm to GFSH, since it relies less on CT-states.

Setup 7C: GFSH

For the GFSH method, simulations are performed for the same energetic configurations, which can be listed as:

1. Tc: 1.595 eV ; PbS: 1.459; CT: 1.318 eV ;
2. Tc: $1.250 \mathrm{eV} ;$ PbS: 1.000 ; CT: 1.318 eV ;
3. Tc: 1.250 eV ; PbS: 1.000; CT: 1.518 eV ;
4. Tc: 1.250 eV ; PbS: 1.000; CT: 1.718 eV .

Just like the first configuration with FSSH, the same energetic configuration only causes population of the CT-states when GFSH is used.

For configuration 2, in 12 of the one thousand runs the exciton is transferred. This would mean that 90% of the initial energy is transferred after 0.17 ns , if the transfer continues at a similar rate. However, the transfer might be too fast since the energy of the CT-state is at some points still lower than the energy of the exciton at tetracene.

Hence, it is interesting to look at configurations 3 and 4, where the CT-state energy is higher.
Figure 4.17 shows the transfer for configuration 3.

Figure 4.17: the surface hopping simulated over time for Setup 7C. The GFSH-algorithm is used, with more realistic energy levels, i.e. $E_{L E(T c)}=1.25 \mathrm{eV}$ and the bandgap of PbS is 1.0 eV . The energy of the lowest charge transfer state is 1.518 eV . All energetic values are averaged over the time of the relevant trajectory.

It is hard to see by eye, but after 1000 runs, 2 excitons are transferred to the PbS QD. This means that 90% of the initial excitons will be transferred after 1.0 ns , under the assumption that the transfer rate is the same.

Figure 4.18 shows that the transfer for configuration 4 happens more quickly than for configuration 3. At the end of the simulation, 6 out of the 1000 runs showed energy transfer. Hence, this would result in a transfer time of 0.3 ns for 90% of the initial excitons, assuming the transfer rate does not change.

Figure 4.18: the surface hopping simulated over time for Setup 7C. The GFSH-algorithm is used, with more realistic energy levels, i.e. $E_{L E(T c)}=1.25 \mathrm{eV}$ and the bandgap of PbS is 1.0 eV . The energy of the lowest charge transfer state is 1.718 eV . All energetic values are averaged over the time of the relevant trajectory.

Setup 9C: FSSH

As we have seen for Setup 7C in combination with FSSH, FSSH does not show energy transfer when the CT-states are energetically unfavourable to populate. For Setup 9C, the same modifications are made to the energy levels, resulting in these 4 configurations:

1. Tc: 1.592 eV ; PbS: 1.415; CT: 1.228 eV ;
2. Tc: 1.250 eV ; PbS: 1.000; CT: 1.228 eV ;
3. Tc: 1.250 eV ; PbS: 1.000; CT: 1.428 eV ;
4. Tc: $1.250 \mathrm{eV} ; \mathrm{PbS}: 1.000 ; \mathrm{CT}: 1.628 \mathrm{eV}$.

Even though the unaltered CT-state energy is lower than for Setup 7C, no energy transfer nor charge transfer is observed at all for any of the four configurations. The energy levels are the same or even more CT-favourable compared to the energy levels of Setup 7C. Hence, the reason for the absence of CT is likely to be something else than the energy differences. The most likely
reason for the lack of CT is that the coupling between the relevant orbitals is very low. Herein, the bigger distance between tetracene and PbS is likely to play a role.

Setup 9C: GFSH

For the same four configurations, the GFSH algorithms is also used. Figure 4.19 contains the surface hopping simulation of the first, energetically unaltered, configuration.

Figure 4.19: the surface hopping simulated over time for Setup 9C. The GFSH-algorithm is used, with unaltered energy levels, i.e. $E_{L E(T c)}=1.529 \mathrm{eV}$ and the bandgap of PbS is 1.415 eV . The energy of the lowest charge transfer state is 1.228 eV . All energetic values are averaged over the time of the relevant trajectory.

This figure shows that some of the CT-states are temporarily populated, before the electron hops back to the excitonic state at Tc. There is no energy transfer from Tc to PbS. For the remainder of the configurations, there is no CT, and thus no energy transfer, at all.

The explanation is likely to be, as mentioned for the FSSH part of Setup 9C, that the coupling for this setup is remarkably low.

4.7 Discussion

4.7.1 Error Margins

During computational analysis and/or simulations, it is very important to clarify the error margins for the results obtained. Due to the nature of the majority of the used algorithms, it is hard to determine clear error margins. But we can be sure that the error margins are more than significant.

During the process:

- the geometry is optimised (with DFT);
- which is used as a starting point for the remainder of the trajectory calculated with MD (with DFT);
- the resulting trajectory is used for recalculation of the Hamiltonians (with DFT);
- which are used for the simulation of surface hopping.

Due to the nature of the development of the DFT functionals, which can well be described as a method of trial and error, it is almost impossible to determine a good guideline for the possible size of errors, especially if there is very little reference data. From chapter 3, we already know that the error for the energy levels could reasonably be more than ten percent. The error for non-quantitative data, such as wave functions is even harder to determine. Nonetheless, knowing that the final data is the result of computations performed on DFT-computed data based on DFT-data based on DFT-data, it is fair to say that one has to be extremely careful drawing conclusions from the data.

4.7.2 Further uncertainty

Next to the errors caused by the computational imperfections, there are also differences between the experimental setup and the computational setup. In the computational setup, there is only
one tetracene molecule. However, in the experimental reality there is an entire nanocrystal of tetracene. This not only has an influence on the energy, but also on the wave function, which is believed to be delocalised over multiple molecules[9]. Within PYXAID, the energy can be corrected for, but possible differences in wave functions and coupling values can not be corrected for. Furthermore, there are multiple QDs in the experiment, whereas the simulation only allowed the presence of one QD. For PbS QDs, the number also plays a role, but it is likely to be a smaller role than for tetracene.

4.7.3 Surface hopping

Within the surface hopping computations, there is two fields in which changes can be made after the determination of the trajectory to achieve as realistic as possible energy transfer. The first is by changing the SH-algorithm, and the second is by shifting the energy levels.

Taking a closer look at the energy levels, in combination with the previously analysed CT-state energies(4.5.1), it is most likely that the configurations with the highest and second-highest CT-state energies are the most reliable configurations. Four the other configurations, the CTstate energies are not increased, resulting in CT-states that are at some times energetically favourable to populate. As far as we can decide, this is an unphysical phenomenon.

Continuing with the configurations with increased CT-state energies, there is a clear difference between FSSH and GFSH. In GFSH there is still energy transfer visible for these configurations, whereas there is no CT when FSSH is used. Since the energy levels are close to reality and since the energy transfer has experimentally been observed, it is clear that GFSH results in a surface hopping simulation that it closer to reality.

Due to described inaccuracies in the behaviour of the orbitals over time, only small parts of the trajectory were used. This limits the observed energy transfer, and the only method to determine the transfer time for the entire energy is to "extrapolate" the energy transfer in an exponential way.

This extrapolation resulted in transfer times of 0.3 and 1.0 ns for 90% of the initial excitons. Literature reports that the energy transfer happens within $<10 \mathrm{~ns}[64]$. Hence, the results of
the calculated transfer times are not contradicting the experiments.
However, since there is only one starting point of the trajectory for each setup, and since the total time of the trajectory was limited, it is impossible to obtain any new insights from the surface hopping data, other that the transfer time is in line with the experiment. Hence, this is one of the reasons why it was interesting look at the coupling.

4.7.4 Coupling

In an ideal alignment between the QD and the tetracene, the Tc HOMO would be slightly in the QD valence band, and likewise the LUMO would be slightly in the conduction band. In the obtained orbitals, the HOMO is higher in energy than the HOMO of the QD, whereas the LUMO is probably further in the conduction band than an ideal practical setup would demand. Therefore, the Tc LUMO - QD LUMOs coupling is on average likely to be overestimated, while the Tc HOMO - QD HOMOs coupling is on average likely to be underestimated.

Furthermore, the coupling signal itself is hard to analyse due to its nature of being either maximal or minimal. Therefore, it was more interesting to analyse modified data, that might be best described as 'coupling density', in which the coupling is averaged over a certain range of a variable.

The creation of the coupling density bins make the data rather rough, since multiple thousands of data points are converted into averaged values for a limited number of bins, which represent the new data. Hence, it is not possible to draw rock-solid conclusions from this data. However, the data clearly indicates that the coupling depends on the distance between tetracene and the acceptor's (including ligand) closest atom, rather than the distance between tetracene and the closest acceptor facet (excluding ligand). Further research will be needed to confirm or reject this suggested dependence.

4.8 Conclusions

After the analysis of the data and a closer look at the reliability of the obtained results, it is necessary to determine which conclusions can be drawn.

For the surface hopping simulations, it has become clear that it is very important to choose suitable values for the parameters, in particular the value of the energies. When the correct energy levels are chosen, energy transfer, albeit little, is observed for Setup 7C in the simulations when GFSH is used. The timeframe is far too short to simulate complete energy transfer. Using exponential extrapolation, an indication of the transfer time can be determined at values of 0.3 ns and 1.0 ns . These transfer times are in line with the time frame as described in the literature (i.e. $<10 \mathrm{~ns}$). For Setup 9C, there is no energy transfer observed. This is possibly caused by an unrealistically large distance for the majority of the trajectory, resulting in low coupling between the orbitals of the donor and acceptor.

For the analysis of the coupling, no clear conclusions can be drawn due to the roughness of the modified data as well as the presence of unknown but significant errors. Taking this into consideration, the data for Setup 7C still suggests that the distance between tetracene and the closest atom of the ligand is the biggest influence on the coupling, whereas the distance between the tetracene and the closest acceptor facet seems to be less important. However, for confirmation of this hypothesis, it needs to be backed by further research. For the relation between the angle/rotation and coupling, no clear correlation can be observed.

For Setup 9C, there was no analysis possible since the density of the coupling peaks was too low.

Chapter 5

Conclusion

5.1 Summary of Thesis Achievements

During the process of the research and the analysis of its results, a number of interesting results, relations and conclusions have become clear. The first part of the research determines the performances of different functionals. The conclusion that is most relevant for the remainder of the calculations is that the PBE functional is not accurate for local states and the same functional struggles determining the charge transfer states and their energies.

The second part of the research, the surface hopping simulation, makes clear that the transfer of energy from tetracene to PbS quantum dots can be reproduced using the GFSH algorithm in combination with the correct energy levels, resulting in energy transfer times that are within the experimentally determined timeframe (i.e. $<10 n s$). Besides this confirmation, no new information can be deducted from the surface hopping results.

Analysis of the Hamiltonians on which the surface hopping calculations are based, indicates that the coupling at least depends on the distance between tetracene and the closest ligand atom. In the same simulated period of time, the distance between tetracene and the closest PbS facet does not change the coupling significantly. Hence, this indicates that the coupling is more dependent of the distance of tetracene with the closest ligand, than that it is dependent of the distance between tetracene and the closest PbS facet. Due to the roughness of the modified data
and the error margins in the prior calculations, this relation can not be definitively concluded until it is backed by further research.

For the rotation and angle of the tetracene molecule with respect to the quantum dot, it was not possible to determine if and how it affects the coupling.

5.2 Applications

This research was performed entirely computationally. However, the actual application that we are interested in, i.e. solar panels, also has to work in reality, and preferably with an optimal efficiency. Hence, for the practical experiments regarding the same matter, it is useful to get a better insight into the energy transfer process. One of the questions for which it is hard to derive the answer from the experimental results, is what the optimal placement of the tetracene molecule with respect to the quantum dot and its ligands is. This research can be considered as a first step towards unveiling the ideal placement.

5.3 Future Work

There are a couple of questions that could not be answered by the research performed for this thesis. These questions could be answered in future work on the same two materials. A first suggestion for future work could be to improve the size of the quantum dot, hopefully resulting in a better alignment of the tetracene HOMO with the HOMOs of the quantum dot. This should overcome the low HOMO-HOMO coupling. Also, one could create more and/or longer trajectories. If the number of different points in time is increased greatly, that would solve a number of problems: the averaged data (the bins) would be less rough and also less prone to irregularities caused by entanglement of multiple variables. Also, this would increase the range of angles and rotations observed, which for this research were not fully utilised.

With these improvements applied, resulting in more than enough datapoints and a better HOMO-HOMO coupling, one can solidly determine for each variable what its influence on the
coupling is.

Appendix A

Coordinates

A. 1 Tetracene Monomer

Atom	X	Y	Z
1 C	-2.215320214	-0.642978562	0.079949647
2 C	-2.006654312	0.709639415	0.095730478
3 C	-0.684101596	1.238613393	0.031010992
4 C	0.395798352	0.401375856	-0.047826168
5 C	0.226827512	-1.016901219	-0.067219313
6 C	-1.119143868	-1.555241828	-0.001353828
7 H	3.770225791	-8.507336923	-0.423042593
8 C	-1.302380481	-2.935308136	-0.019149476
9 C	-0.21648739	-3.826542902	-0.099434849
10 C	1.131176099	-3.28752551	-0.165383138
11 C	1.307122416	-1.891599928	-0.146846228
12 C	2.217069191	-4.178760277	-0.245668511
13 C	2.033832578	-5.558826585	-0.263464159
14 C	0.687861198	-6.097167193	-0.197598674
15 C	-0.392433706	-5.222468485	-0.117971759

16 C	0.518890358	-7.515444269	-0.216991819
17 C	1.598790305	-8.352681805	-0.295828979
18 C	2.921343022	-7.823707828	-0.360548465
19 C	3.130008924	-6.47108985	-0.344767634
20 H	-3.228866348	-1.048532858	0.129544288
21 H	-2.855537081	1.39326851	0.158224606
22 H	-0.537577468	2.32036979	0.044794606
23 H	1.40946252	0.806633472	-0.097433628
24 H	4.143555058	-6.065535554	-0.394362275
25 H	-2.316744761	-3.340271467	0.030504005
26 H	2.320974421	-1.48534899	-0.196444076
27 H	3.231433471	-3.773796945	-0.295321992
28 H	-1.406285712	-5.628719423	-0.068373911
29 H	-0.494773811	-7.920701885	-0.167384359
30 H	1.452266177	-9.434438203	-0.309612593

Table A.1: the optimised coordinates of a tetracene monomer, as used in the calculations.

A. 2 Tetracene Dimer

Atom	X	Y	Z
1 C	-1.090614808	-1.224294788	2.243515193
2 C	-1.854750323	-1.913408852	3.236440827
3 C	-2.000827406	-1.38302288	4.495973741
4 C	0.434906516	0.217658	0.320812707
5 C	1.188042053	0.902606	-0.656558403
6 C	1.345470465	0.386055516	-1.947224687
7 C	2.106783128	1.075298422	-2.942460256

8 C	2.24468757	0.54782424	-4.20436544
9 C	0.897086064	-1.392 588082	-3.621 051457
10 C	0.731008469	-0.883 316641	-2.291181 048
11 C	-0.930 264053	-1.741289 939	0.953775215
12 C	1.641313091	-0.698 233974	-4.545315998
13 C	-1.401713259	-0.135017178	4.836694761
14 C	-0.65168157	0.557103562	3.915483449
15 C	-0.477 691566	0.045944456	2.58786373
16 C	0.272180431	0.731102812	1.627500592
17 C	-0.016 040214	-1.56887481	-1.329 365361
18 C	-0.176914793	-1.055 82295	-0.022 310529
19 H	-2.333687239	-2.853543378	2.97056478
20 H	-2.589 869429	-1.919 241195	5.235231324
21 H	1.673660812	1.84077052	-0.392 819338
22 H	2.588413568	2.01441089	-2.677863 431
23 H	2.829781024	1.08518072	-4.946132084
24 H	0.405893249	-2.328760122	-3.878 245496
25 H	-1.415314534	-2.679 428393	0.688948701
26 H	-0.505 802494	-2.504 46417	-1.595 241291
27 H	1.771538116	-1.098651761	-5.549 397925
28 H	0.761045953	1.666959604	1.894550168
29 H	-1.539 291751	0.269177096	5.838007601
30 H	-0.164130 018	1.495215122	4.172808572
31 C	5.769742256	3.448231145	-4.571164907
32 C	5.089394039	4.062246585	-3.547031359
33 C	4.899588568	3.391040749	-2.295877136
34 C	4.194210522	3.984544482	-1.243882341
35 C	4.544593765	1.975341435	0.150772406
36 C	5.259450994	1.385042834	-0.915661864

37 C
38 C 39 C 40 C 41 C 42 C 43 C 44 C 45 C 46 C 47 C 48 C 49 H 50 H 51 H 52 H 53 H 54 H 55 H 56 H 57 H 58 H 59 H 60 H

5.443438979	2.055805919	-2.129616444
6.152210386	1.458688394	-3.222513658
6.293900699	2.130904933	-4.414283842
2.274521651	3.16728133	4.557801576
2.408159087	3.836817311	3.363550952
3.110168991	3.236237253	2.267540692
3.289340494	3.904133477	1.051332351
4.002989215	3.313168392	-0.015459459
4.354644554	1.305126536	1.379972694
3.654225017	1.901107919	2.433634064
3.471868689	1.233229153	3.687772134
2.79913836	1.850373521	4.714975251
5.914911194	3.970736851	-5.514623469
4.664034616	5.055250156	-3.673219236
3.758871514	4.972628729	-1.382196696
2.659146364	1.329723718	5.660345711
5.691213839	0.395335751	-0.778695403
6.585379716	0.470896913	-3.084028909
6.820296855	1.662391051	-5.244198713
1.753960262	3.637220279	5.390575918
1.976165218	4.825625934	3.226264233
2.856367107	4.893049855	0.913821302
4.789565463	0.316875319	1.518340071
3.89775405	0.240759136	3.814594817

Table A.2: the optimised coordinates of a tetracene dimer, as used in the calculations.

A. 3 Pentacene Monomer

Atom	X	Y	Z
1 C	-4.434544461	2.79057895	0.222565069
2 C	-4.357266828	5.605422447	0.224108507
3 C	-5.585 702234	4.95797194	0.180019232
4 C	-5.625 692035	3.504222177	0.179562952
5 C	-0.734 623252	3.369089305	0.354872134
6 C	-0.694501836	4.826107019	0.355510396
7 C	-1.899 028545	5.539163943	0.3124007
8 C	-3.140 782144	4.892911045	0.268020919
9 C	-3.180 920715	3.435903335	0.267393904
10 C	-1.976 398894	2.722853392	0.310633492
11 C	-6.822 842971	5.673488258	0.134987554
12 C	-6.900 217467	2.857598718	0.134063651
13 H	5.147255446	5.187996121	0.564947082
14 H	5.078355199	2.687210498	0.56513943
15 H	-1.869 367799	6.632125599	0.312789526
16 C	-8.018 876703	5.011470577	0.091876284
17 C	-8.058 02309	3.584303967	0.091793041
18 H	-8.953827831	5.574354228	0.057088344
19 H	-9.022 606935	3.073484666	0.057351845
20 H	-4.329 410522	6.698535259	0.224286427
21 H	-6.794897754	6.766076627	0.134703234
22 H	-6.932 025823	1.765120204	0.13355724
23 H	-2.006 066749	1.629886962	0.310134922
24 C	3.024899709	5.404132737	0.48870354
25 C	1.750339752	4.757464088	0.443158636
26 C	1.710207168	3.303717435	0.442638649
27 C	2.947338648	2.588177973	0.48767883

28 C	4.143419838	3.25014125	0.530623206
29 C	4.182608988	4.67726617	0.530747193
30 C	0.559245578	5.471267559	0.400208991
31 C	0.481740528	2.656252515	0.398553583
32 H	2.91938998	1.495582528	0.487831093
33 H	-4.465799096	1.697680577	0.222001066
34 H	3.056278027	6.496517102	0.489207822
35 H	0.590628557	6.564169904	0.400834635
36 H	0.453640443	1.563266731	0.398391895

Table A.3: the optimised coordinates of a pentacene monomer, as used in the calculations.

A. 4 Pentacene Dimer

Atom	X	Y	Z
1 C	-0.980021978	0.520163923	-5.2092666
2 C	-0.370735876	0.154420715	-6.386905655
3 C	0.878044883	-0.534510619	-6.378074445
4 C	1.510544699	-0.832401619	-5.194863858
5 C	0.918552307	-0.463275174	-3.942076462
6 H	-1.918897585	1.070681673	-5.2142469
7 H	-0.844406294	0.386531332	-7.339601246
8 H	1.333230368	-0.827837435	-7.321829337
9 H	2.450297151	-1.380435644	-5.188820813
10 C	1.573791826	-0.685412281	-0.261866212
11 C	0.979420287	-0.330321022	0.963760689
12 C	1.601602533	-0.620910412	2.203657305
13 C	1.005801349	-0.264758787	3.416927623

14 C	1.622270056	-0.565 736185	4.67762682
15 C	-0.278610282	0.413804786	3.410969881
16 C	-0.903 538801	0.702108836	2.19487486
17 C	-0.31206638	0.342386718	0.959147993
18 H	2.520049688	-1.224 19021	-0.259 17868
19 H	2.546895016	-1.161570 666	2.208196516
20 H	2.562340902	-1.114 203609	4.682638501
21 H	-1.848 342539	1.243371063	2.192652907
22 H	-1.809 933151	1.331588012	4.657848505
23 C	-0.935964 421	0.632622492	-0.269 21792
24 C	-0.341216094	0.278447326	-1.494964961
25 C	-0.962 249197	0.570754295	-2.735018317
26 C	1.542417107	-0.753571676	-2.725 93655
27 C	0.950284399	-0.394 639355	-1.490 294307
28 H	-1.882 3927	1.171114444	-0.271735295
29 H	-1.907149 176	1.112197202	-2.739 700789
30 H	2.486905829	-1.295358277	-2.723658003
31 C	1.01362281	-0.199 031981	5.855291597
32 C	-0.236132 166	0.488047651	5.84685056
33 C	-0.869 960855	0.78404667	4.66372777
34 H	1.489157288	-0.428305316	6.807794548
35 H	-0.690 438827	0.7822499	6.790796125
36 C	-0.365 309621	0.21638983	-3.948281237
37 H	5.460415428	4.898306514	-2.807094546
38 C	2.057503261	3.12149349	-0.211972611
39 C	2.639610402	3.408116855	-1.461 172659
40 C	2.00103675	3.054583688	-2.674678553
41 C	2.581488594	3.345914382	-3.911952452
42 C	1.929090409	3.010378545	-5.143907612

43 C	2.513635719	3.324982725	-6.346941261
44 C	3.788072968	3.96185361	-6.395379 05
45 C	4.449911482	4.304645158	-5.239 91748
46 C	3.871926768	4.011161001	-3.960 305171
47 C	4.513121813	4.362343859	-2.769 447049
48 C	4.570243746	4.430905749	-0.306172 455
49 C	3.988557752	4.143934548	0.942770963
50 C	4.627241718	4.497892244	2.155918234
51 C	4.048563504	4.205701948	3.393287887
52 C	4.70211758	4.542685748	4.624287801
53 C	4.119183305	4.227976131	5.828086575
54 C	2.846128131	3.58854921	5.878035615
55 C	2.183766146	3.243164189	4.723457292
56 C	2.759083694	3.538420168	3.442770823
57 C	2.116991198	3.187922256	2.251893661
58 C	2.695743306	3.475896336	0.991101152
59 C	3.93286975	4.075569197	-1.509 325529
60 H	1.108835511	2.587918657	-0.175990 879
61 H	1.051999689	2.521919232	-2.639 311108
62 H	0.974779246	2.489009464	-5.108324364
63 H	2.000185554	3.09024178	-7.276919794
64 H	4.234779076	4.175299972	-7.363 728853
65 H	5.402892188	4.82923874	-5.274667237
66 H	5.517927263	4.965757598	-0.341833403
67 H	5.57585269	5.031088802	2.120153463
68 H	5.655396324	5.066121026	4.586875021
69 H	4.632992634	4.464568117	6.757265983
70 H	2.401835923	3.374466274	6.847245893
71 H	1.233325382	2.714090159	4.759786507

Table A.4: the optimised coordinates of a pentacene dimer, as used in the calculations.

A. $5 \mathrm{PbS}+7 \mathrm{C}$ and Tetracene

Atom	X	Y	Z
1 Pb	26.04325716	19.38905969	14.52529647
2 Pb	17.71986062	26.45281952	22.91888526
3 Pb	26.36353817	17.20758394	29.64248058
4 Pb	27.89106737	23.38363577	20.52089404
5 Pb	26.01996125	10.22903762	20.98919502
6 Pb	22.92602089	19.12180838	29.49173187
7 Pb	29.10438786	20.60896417	17.49787786
8 Pb	30.40094941	24.72563411	23.2319806
9 Pb	26.94095171	26.69696741	22.81829571
10 Pb	26.91960768	16.55003871	17.51448177
11 Pb	23.2501546	18.29140219	17.13331083
12 Pb	27.8869895	23.7646878	26.52397986
13 Pb	24.6352887	13.22139978	29.31373478
14 Pb	14.59160918	15.77076301	20.06447965
15 Pb	24.14250977	15.7497712	20.68772981
16 Pb	27.9012837	13.94522342	20.78726085
17 Pb	15.54920938	12.89803244	23.27696316
18 Pb	20.57247107	27.4414331	26.07739166
19 Pb	14.71757115	15.94575045	25.75355695
20 Pb	26.0374183	19.35502948	20.23271103
21 Pb	24.54301388	15.41593202	14.53710071
22 Pb	23.38914627	16.27421528	32.45222157
23 Pb	24.04821095	16.08430202	26.43360037
24 Pb	28.17739655	14.06346455	27.31106694
25 Pb	24.17627306	25.6325361	26.2584079
26 Pb	13.65085116	18.88261357	23.16227741
27 Pb	25.12001724	22.49140624	17.27006329
28 Pb	21.47471655	24.1951023	17.12497031
29 Pb	20.64915584	27.37003393	19.65437951
30 Pb	29.67287757	17.7188376	21.0020344
31 Pb	31.18048722	14.69651617	23.34878516
32 Pb	32.24381903	18.79521336	23.47139244
33 Pb	31.22686789	21.52091439	20.54502639
34 Pb	28.74225514	20.77323028	23.66534793
35 Pb	26.82557998	16.59854127	23.72287578
36 Pb	25.7646743	19.81608241	26.50176305
37 Pb	25.70224714	20.18265057	32.88288993
38 Pb	24.93674608	22.90589184	29.17411854
39 Pb	25.16520622	22.50522056	23.36693315
40 Pb	20.85146877	24.61564103	29.38813728
41 Pb	21.52709707	21.89653399	32.27974586
42 Pb	21.18519105	24.72254561	23.08022787
43 Pb	23.11911273	18.77898748	23.29444121
44 Pb	30.04281256	17.83610148	27.30339341
45 Pb	31.61932459	21.73773506	26.40368202
46 Pb	21.86531351	11.97817085	20.26710528
47 Pb	22.90461795	9.300760499	23.67406307
48 Pb	19.1245904	11.03517015	23.42062939
49 Pb	21.75383594	12.41105256	26.47922683
50 Pb	22.97207492	28.0619241	22.9618386
51 Pb	22.01671731	21.98363346	26.04215887
52 Pb	24.45146529	25.40493647	19.93985305
53 Pb	20.4656572	17.61673692	14.19797095
54 Pb	20.95048459	14.29118908	17.1457014
55 Pb	17.38329564	16.65572833	17.01795807
56 Pb	18.43839553	13.89236398	20.18215776
57 Pb	20.16903498	17.7667189	20.27101721
58 Pb	20.79016483	14.90051115	23.35475649
59 Pb	17.26988801	17.18893514	22.91505999
60 Pb	18.18254412	13.83259756	26.20019715
61 Pb	20.01955042	18.17693582	26.24821147
62 Pb	20.63049497	15.11712617	29.50930871
63 Pb	16.74616193	16.92466884	29.39454493
64 Pb	19.91575207	18.14861477	32.04496828

65 Pb	28.77833821	21.02472775	29.66290461
66 Pb	22.64904158	21.16149116	14.24501259
67 Pb	28.4018546	11.10381515	23.97569484
68 Pb	24.83250034	12.99806954	23.43419755
69 Pb	22.02585316	21.66077884	20.13084872
70 Pb	25.4883267	10.2128689	27.04009233
71 Pb	19.46757552	20.35279482	17.04444235
72 Pb	25.70923838	12.39864635	17.30283884
73 Pb	16.55026032	19.67357843	19.85443771
74 Pb	18.12554839	23.52566491	19.72284113
75 Pb	19.27349348	20.74488898	23.17313282
76 Pb	15.06427931	22.80462837	23.3505587
77 Pb	16.15343005	19.68890923	25.96654897
78 Pb	17.94412292	23.80934401	26.02570329
79 Pb	18.99336305	21.15681645	29.29189357
80 S	22.05711556	21.89148809	29.48068613
81 S	21.11219418	24.62866321	26.17961229
82 S	29.54996356	18.02624478	23.87381836
83 S	24.030378	15.62700228	17.08886265
84 S	26.27257407	19.33699493	17.48219989
85 S	24.96891662	12.95479032	20.59727422
86 S	22.24121402	21.52682042	16.84115265
87 S	27.71620476	23.8350136	23.51851114
88 S	23.30554774	18.55607448	14.32128873
89 S	27.0801724	16.7185447	20.73660906
90 S	24.73816999	12.8945045	26.66805262
91 S	23.21249591	18.90577697	20.50415778
92 S	31.47538739	21.90655157	23.50134862
93 S	14.40743786	16.0037833	23.07815601
94 S	23.82770205	15.90812093	23.3979545
95 S	25.81535524	19.49727026	23.71854614
96 S	21.66306597	24.63896091	20.22298147
97 S	26.79465714	16.79756044	26.67903901
98 S	25.28175009	22.58556686	19.99034179
99 S	29.11414686	20.91427218	26.53699377
100 S	22.62331936	18.98981552	32.52621345
101 S	20.30961012	27.40928036	22.73330967
102 S	23.15852769	18.97275376	26.61769366
103 S	21.9447799	11.95716826	23.44971177
104 S	23.60590496	16.02667664	29.70034608
105 S	25.8039898	20.08196674	29.77094645
106 S	28.53040318	20.46951486	20.48376578
107 S	22.05226756	21.94671763	23.00576453
108 S	24.18556479	25.45637157	22.65048244
109 S	24.98517052	22.59149786	26.09269537
110 S	25.87790157	10.40749524	23.65262679
111 S	20.23942679	17.79078525	16.92953635
112 S	21.33822528	14.84588033	20.38436602
113 S	17.4209583	16.66464904	19.84977502
114 S	18.17356817	14.01432	23.3858659
115 S	20.18215503	17.78644646	23.26896895
116 S	20.8912544	15.03247699	26.26934111
117 S	17.35223346	17.18732007	25.95836486
118 S	19.72750484	17.98548625	29.17307329
119 S	19.48215291	20.57547255	20.25906878
120 S	16.41795706	19.9359977	23.03921945
121 S	18.36646355	23.78633051	23.23818238
122 S	19.1749591	20.8086531	26.0236284
123 S	27.88911249	13.74377528	23.71518423
124 H	18.26366507	23.42859933	16.94921877
125 O	18.97535138	23.18491387	17.61444229
126 O	17.83437935	26.43741996	25.49497323
127 H	19.10389807	11.12132555	20.34700386
128 C	28.2860328	21.46299139	13.96514212
129 O	28.06107159	20.68570899	15.00999427
130 O	27.47445003	21.90654604	13.16771318
131 H	29.29434795	21.85159694	13.85441955
132 H	21.60519445	12.37265139	29.65142282
133 O	22.18921069	12.85826419	29.07523386
134 O	22.19982243	14.65145166	14.38231215
135 C	21.27122024	13.85218067	14.05109916
136 C	22.73367354	29.34968112	19.64479755
137 O	22.64063097	28.39253368	20.49285699
138 O	21.82796498	29.63556926	18.83177565
139 H	23.7533809	29.83070227	19.74652844
140 C	18.13101767	13.65974873	29.97602631
141 O	18.02375693	14.53895663	29.04248112
142 O	19.23804263	13.4115769	30.55421562
143 H	17.19895537	13.14985788	30.24255753
144 C	20.14156677	28.67950715	28.87075129
145 O	20.12751684	29.50024736	27.90918893
146 O	20.65594674	27.51616335	28.77054476
147 H	19.57239393	28.9078626	29.79092162
148 H	22.86921861	28.85032035	25.91691236
149 O	22.85186092	28.01757068	25.46993425
150 H	15.93311103	27.67539311	17.8871084

$25.41422955 \quad 18.65985006$ $29.33655729 \quad 21.56221221$ $28.9297152 \quad 21.27903238$ $28.90515663 \quad 22.52024613$ $30.22148019 \quad 21.03084426$ $21.95882403 \quad 13.96274786$ $21.53365 \quad 14.71343284$ $17.34227935 \quad 17.42287917$ $18.26644775 \quad 17.99607919$ $26.48824203 \quad 26.7651055$ $25.89900505 \quad 26.26054852$ $22.72944071 \quad 25.53541057$ $23.36447955 \quad 26.01703602$ $8.935936821 \quad 20.17755236$ $9.50860636 \quad 21.051019$ $9.480336346 \quad 19.27468215$ $7.825027226 \quad 20.13953285$ $21.38133829 \quad 32.20189797$ $20.96838478 \quad 31.66217997$ $20.0309619 \quad 13.5840974$ $20.09845614 \quad 14.25884201$ $11.13792371 \quad 26.44370898$ $11.67144911 \quad 25.93917316$ $13.22168808 \quad 14.87349304$ $13.63604054 \quad 12.96303818$ $12.01329895 \quad 22.76085733$ $11.70754685 \quad 22.78112439$ $13.1728669 \quad 22.69895912$ $11.11108821 \quad 22.62820914$ $21.29162961 \quad 33.25616837$ $21.00644818 \quad 32.0865568$ $21.21508371 \quad 34.32285399$ $21.69240352 \quad 33.19700678$ $22.36897702 \quad 19.45079709$ $22.01861936 \quad 20.07155062$ $27.61792279 \quad 26.06157769$ $11.55475791 \quad 21.02330065$ $7.463935299 \quad 24.16955313$ $8.737109183 \quad 24.32648046$ $6.70743296 \quad 23.65818428$ $7.096973336 \quad 24.50434718$ $14.91495318 \quad 28.04830515$ $15.49103322 \quad 27.98184356$ $17.63968636 \quad 17.23531246$ $16.20731164 \quad 17.22876269$ $13.49302195 \quad 17.31455588$ $14.31579482 \quad 17.67050437$ $24.36233209 \quad 23.84527499$ $26.72884748 \quad 23.07765421$ $27.29133642 \quad 22.15043458$ $26.38058825 \quad 22.08560485$ $10.95529929 \quad 16.42389745$ $9.212957029 \quad 17.38633738$ $20.48571064 \quad 16.791405$ $20.92162563 \quad 17.91339505$ $20.2622847 \quad 15.7950676$ $20.4824995 \quad 16.73081193$ $\begin{array}{ll}10.3654355 & 23.13756164 \\ 10.89707632 & 23.63926967\end{array}$ $10.89707632 \quad 23.63926967$ $\begin{array}{ll}18.64008079 & 28.09695373 \\ 18.49702517 & 27.6794\end{array}$ $25.26318837 \quad 27.11161622$ $24.36166508 \quad 26.19551498$ $25.51928412 \quad 27.71201603$ $25.98986576 \quad 27.27071483$ $\begin{array}{ll}16.40547464 & 23.02570928\end{array}$ $\begin{array}{ll}16.59842493 & 23.08285415 \\ 25.57270705 & 20.79753052\end{array}$ $25.57270705 \quad 20.79753052$ $26.30109632 \quad 20.33029749$ $14.57762076 \quad 28.78418575$ $\begin{array}{ll}15.87363378 & 28.79897612 \\ 13.89574582 & 27.79734851\end{array}$ $13.89574582 \quad 27.79734851$ $14.17853528 \quad 29.77489696$ $24.6974729 \quad 32.24414242$ $23.94798949 \quad 31.68431878$ $10.07350079 \quad 18.36389066$ $10.071439 \quad 17.33118463$ $11.03811585 \quad 27.42168765$ $11.0275464 \quad 26.56980459$ $\begin{array}{ll}11.99902962 & 28.16478304 \\ 10.01493195 & 27.66677856\end{array}$ $19.79326991 \quad 17.14945681$ $19.38860855 \quad 17.37215001$ $\begin{array}{ll}25.48141119 & 23.54348867 \\ 25.54053175 & 23.26272307\end{array}$ $23.90684165 \quad 29.75329831$

237 O	18.77373658	23.50099535	29.08536069
238 H	26.6214375	10.27666033	31.13109359
239 O	26.44620627	9.025093007	29.57921276
240 H	21.16693826	11.30030531	17.63245619
241 O	21.04149342	12.1985121	18.07179825
242 H	28.06180512	23.61608421	29.55713603
243 O	27.54439827	23.0254085	28.91889896
244 H	28.1603931	13.4985469	17.8328121
245 O	27.28662554	13.60725238	18.25975171
246 O	23.99022381	25.11330962	28.4341997
247 H	24.41098974	25.80325303	28.9678667
248 H	24.01311437	24.97832948	16.36859837
249 O	23.87785832	24.4467388	17.17224471
250 C	16.71148181	26.65177597	26.12398487
251 O	16.20077454	25.77240804	26.85510719
252 H	29.50498761	17.76257844	30.03032886
253 O	28.82666282	18.14447233	29.37151933
254 O	26.08051304	11.23893294	29.36339197
255 C	26.3895692	10.16615865	30.04205521
256 H	12.63617453	21.76982325	24.20436421
257 O	13.36058305	21.22499395	23.79991534
258 O	32.73237248	19.38051381	26.58644224
259 C	33.11590535	18.51613858	27.39406962
260 C	31.18139179	22.94691453	29.70685384
261 O	31.40466575	21.96521771	28.86251514
262 O	30.08349719	23.14986697	30.22804916
263 H	32.0159902	23.62031075	29.95801857
264 H	13.32307952	19.0127979	25.99372617
265 O	14.01101383	18.57038517	25.39367365
266 O	18.77454782	19.18950528	12.69182276
267 H	18.02592903	21.561961	14.77676598
268 C	25.19335412	23.45634471	32.35547884
269 O	25.62981483	24.01783407	31.32043528
270 O	24.4854595	22.43042774	32.46347598
271 H	25.52090777	24.01864372	33.25041174
272 C	27.96698556	23.85324652	16.84462111
273 O	28.1864943	23.22176664	17.94117331
274 O	26.87325685	23.93904137	16.24063506
275 H	28.79048063	24.47056202	16.40236271
276 C	13.63540559	18.93877059	19.04050372
277 O	14.35273022	19.88240616	18.64889072
278 O	14.00414569	18.15707485	20.03259841
279 H	12.44552768	17.4337217	18.13533485
280 H	15.19355254	13.46819544	26.20227251
281 O	15.71379121	13.89315437	25.51639148
282 O	17.57197007	16.13346415	31.9536221
283 H	16.02195238	16.64619551	33.21131271
284 H	30.99246727	14.70970743	20.61042862
285 O	30.41078185	15.19437672	21.22951704
286 H	26.30655374	12.85844863	14.59768968
287 O	25.83702636	13.51007373	15.17058779
288 C	29.55592833	11.11095324	20.79525847
289 O	28.49792222	10.86831791	21.53689225
290 O	29.68412301	12.0332398	20.00669457
291 H	30.44676939	10.44857439	21.0060653
292 H	20.64683385	15.09414679	32.49568791
293 O	21.08806354	15.86405007	32.11806935
294 O	15.91323766	17.56810337	31.43425296
295 C	16.55929252	16.85476734	32.31535844
296 H	32.51318326	18.78619534	20.59293281
297 O	31.92889569	19.24695577	21.16077355
298 H	27.70251873	17.15637029	33.43316122
299 O	26.35655977	15.57806	33.38787109
300 H	27.6225454	16.36867581	14.87505481
301 O	26.74132758	16.61832787	15.13242523
302 O	25.88407859	17.61009442	32.54521034
303 C	26.69749431	16.76695273	33.11359574
304 C	13.78392272	15.01346698	17.19679538
305 O	14.8417197	15.80683325	17.31537234
306 O	13.06112512	14.83996845	18.2565936
307 H	13.17998253	14.79364288	15.26151501
308 C	20.84748095	27.01120886	15.97379381
309 O	20.67380226	25.95793514	15.29230796
310 O	21.28171928	26.97138781	17.21077996
311 H	19.52501355	28.52982447	15.25918637
312 C	16.00086564	12.11903029	19.24676432
313 O	15.6652824	12.9028132	20.296814
314 O	17.16692235	11.98562686	18.86094088
315 H	15.18124765	11.5483468	18.82720307
316 C	22.46291831	9.310366175	27.1795422
317 O	23.18427646	9.498523187	28.20605782
318 O	22.81877751	9.487532629	25.96762756
319 H	21.3971438	9.120369991	27.43414099
320 C	16.00048195	20.51725674	30.06227681
321 O	16.77037704	21.49951928	30.41396699
322 O	16.23292991	19.61789515	29.18121387

323 H	15.06317775	20.45310535	30.67809749
324 C	17.54377957	15.81626123	13.96852099
325 O	18.62010092	16.01200853	14.60167652
326 O	16.45849008	15.61453304	14.63058891
327 H	18.49448712	15.70943871	12.00824359
328 H	27.61277948	14.46164695	30.0936617
329 O	27.03009142	14.5466135	29.33643278
330 H	31.03269548	24.5810636	20.5816385
331 O	30.53016421	23.87729728	21.06545032
332 C	16.90532873	26.47912124	19.35124802
333 O	17.78879456	26.62100706	20.30116947
334 C	20.27775201	18.91083592	9.578877211
335 C	19.06037148	19.09374878	8.591928813
336 C	17.7242722	18.59287125	9.352043107
337 C	17.5792404	17.06878588	9.60810402
338 C	16.29735878	16.74572141	10.46212664
339 C	16.49366788	16.68859201	12.00890822
340 C	17.48858896	15.65203696	12.46076657
341 H	21.19514073	18.96781842	9.000567897
342 H	20.07786935	17.96400348	10.09131787
343 H	20.32888289	19.59449334	10.38205995
344 H	19.12337329	18.3749783	7.677146011
345 H	18.93250929	20.11087324	8.274708467
346 H	16.91635621	18.87965711	8.727196929
347 H	17.629965	19.15614244	10.28696714
348 H	18.37376132	16.64826324	10.22273107
349 H	17.52545227	16.59598773	8.618309981
350 H	15.99662891	15.74727266	10.19271953
351 H	15.36407099	17.27809436	10.16540136
352 H	15.44537742	16.41274541	12.35032527
353 H	16.78063211	17.71823665	12.29208239
354 H	17.04409745	14.67484873	12.34920331
355 C	22.53882832	29.94249502	9.441106964
356 C	22.00679692	29.13258267	10.65186871
357 C	22.70150119	27.78907368	10.81937994
358 C	22.35640368	27.01725379	12.19924854
359 C	22.47211478	27.873954	13.50652856
360 C	21.11908088	28.55972161	13.90294873
361 C	20.58519143	28.39570629	15.31105051
362 H	23.65842921	30.02273159	9.611001526
363 H	22.13464734	30.92589267	9.395859002
364 H	22.35282195	29.47361331	8.508255679
365 H	20.88970748	29.00483817	10.42312837
366 H	22.06910642	29.66930586	11.61000619
367 H	23.69935328	27.85314181	10.7225708
368 H	22.34737798	27.18864118	9.985008227
369 H	22.98365057	26.14717716	12.2608195
370 H	21.27627622	26.72340218	12.21083364
371 H	23.25473918	28.69919409	13.42324893
372 H	22.74227905	27.24237232	14.32022236
373 H	20.34084277	28.15002576	13.24572579
374 H	21.12423555	29.65597669	13.65323401
375 H	21.09584173	29.15211585	15.82503067
376 C	11.75190498	7.365089338	13.1410874
377 C	11.00586972	8.534622396	13.82057192
378 C	11.92698954	9.68780122	14.02983308
379 C	11.63130641	10.83816592	15.16194871
380 C	12.75051009	11.91232896	15.05049846
381 C	12.77896652	12.92798356	16.26698795
382 C	13.67184513	14.15393073	15.93501204
383 H	12.2295234	7.679331014	12.17875637
384 H	11.11176072	6.463998068	13.08204842
385 H	12.63908122	7.152961826	13.79900732
386 H	10.63210982	8.212983082	14.82908037
387 H	10.12378348	8.792005293	13.27118326
388 H	12.1532373	10.14056961	13.05043844
389 H	12.90196782	9.274113682	14.25108597
390 H	11.62052924	10.38118016	16.13105652
391 H	10.63084159	11.26614348	15.06867746
392 H	12.71090968	12.44126734	14.12120624
393 H	13.6928846	11.3364268	15.04893763
394 H	13.26461562	12.43524441	17.10221776
395 H	11.74175595	13.07308775	16.69177953
396 H	14.65025443	13.89398985	15.59170363
397 C	8.452695572	17.82184456	11.89264262
398 C	9.542184332	18.77252809	12.44394644
399 C	9.878547167	18.27509269	13.87399476
400 C	10.76628647	19.09820428	14.70574876
401 C	11.1099072	18.60875173	16.10957058
402 C	12.20720711	19.33714247	16.91774475
403 C	12.41936351	18.58040197	18.22326725
404 H	7.803009213	17.55360756	12.74351262
405 H	8.891884789	16.88527688	11.5503056
406 H	7.779045456	18.27407932	11.20606135
407 H	9.262865135	19.88355624	12.43477636
408 H	10.4000832	18.68305361	11.748721

409 H	10.29131068	17.22859286	13.78524519
410 H	8.957369092	18.14533685	14.41063895
411 H	10.26864503	20.09699655	14.76954066
412 H	11.66814877	19.47727191	14.20070346
413 H	11.44922744	17.53378705	16.09188428
414 H	10.17014709	18.54868819	16.69938283
415 H	11.90779156	20.43481366	17.11054067
416 H	13.1269528	19.38795319	16.3118014
417 H	11.50926192	18.70734628	18.767959
418 C	13.44846826	23.75468249	9.643919564
419 C	14.02664167	24.03994785	11.03038873
420 C	13.46227985	23.02857475	12.0171347
421 C	14.38783966	21.8228662	12.30224626
422 C	15.7916725	22.11150016	12.97500674
423 C	16.59274719	20.80587968	13.29548375
424 C	17.99279537	21.13935207	13.7538329
425 H	13.58302463	22.68419801	9.33871287
426 H	13.77652794	24.58585187	9.00915142
427 H	12.33056662	23.92784062	9.735662494
428 H	13.82107415	25.08868361	11.27240615
429 H	15.1036796	24.12178247	11.16627388
430 H	12.49144893	22.63230349	11.5714157
431 H	13.26029876	23.54411701	13.02209859
432 H	14.59163676	21.40374003	11.32298322
433 H	13.75421816	21.24575791	12.97463958
434 H	15.78158568	22.56885961	13.94508389
435 H	16.36664895	22.68933264	12.25368134
436 H	16.58374905	20.21216815	12.33735046
437 H	15.98566902	20.20419566	14.01176468
438 H	18.35284997	22.00660475	13.13910527
439 C	14.63082797	34.36089889	24.11047587
440 C	14.96002072	32.99329878	23.38677292
441 C	14.01845202	31.87340256	23.63987402
442 C	14.37443573	30.50872938	23.16518536
443 C	13.44011938	29.38636718	23.69491834
444 C	13.76928214	28.03208052	23.01484718
445 C	12.92034624	26.83547253	23.55361076
446 H	13.51067728	34.68011531	24.22579321
447 H	14.88920359	35.11846934	23.35793407
448 H	15.14704506	34.7000158	25.04565408
449 H	15.94574293	32.69244666	23.77705017
450 H	15.06670125	33.1699402	22.3008477
451 H	13.04952245	32.11286892	23.30907145
452 H	13.84133056	31.85577565	24.69294738
453 H	15.35437032	30.38706368	23.71717333
454 H	14.56421836	30.51767437	22.07716317
455 H	12.29857016	29.49821514	23.62621488
456 H	13.5944606	29.28924599	24.80478565
457 H	14.87376095	27.80290766	22.97231139
458 H	13.6671689	28.21638049	21.91252223
459 H	12.75368201	27.08988397	24.67055485
460 C	19.47729512	34.41734264	18.13734141
461 C	18.65837903	33.52350334	19.07765563
462 C	18.37215908	32.09231012	18.55662642
463 C	17.76545169	31.06259448	19.56230523
464 C	17.4126962	29.71829487	18.91377722
465 C	16.24426903	28.91390397	19.6370941
466 C	15.9534665	27.56116208	18.97204508
467 H	20.56370353	34.13626442	18.1582322
468 H	19.37424575	35.53600193	18.44579586
469 H	19.09610037	34.34406667	17.07962261
470 H	17.68522365	34.05412131	19.2748242
471 H	19.16535214	33.56668007	20.10629423
472 H	19.27652678	31.61731441	18.18000659
473 H	17.65045583	32.29428714	17.7397443
474 H	16.8500603	31.50949551	19.98438254
475 H	18.35534211	30.8735288	20.47345015
476 H	18.27682065	28.98087503	18.96462815
477 H	17.06643819	29.8443447	17.87211095
478 H	15.45710704	29.6665628	19.59242586
479 H	16.45056591	28.78486065	20.68879755
480 H	14.98576611	27.09378733	19.15895019
481 C	8.748859228	29.29707688	10.44620807
482 C	8.580935436	29.95047483	11.61071638
483 C	9.012582823	29.44147139	12.87644625
484 C	8.874197313	30.06843281	14.0792613
485 C	10.06092906	28.32223872	15.28699375
486 C	10.26069699	27.66215442	14.06105124
487 C	9.697729228	28.1594145	12.88582486
488 C	9.913135339	27.52591414	11.58057389
489 C	9.416330731	28.04921354	10.41123791
490 C	10.10999762	29.94898561	20.23460576
491 C	9.620799091	30.50616782	19.0374917
492 C	9.690810065	29.75273756	17.80127738
493 C	9.225395052	30.2266355	16.57971106
494 C	9.314637254	29.5402764	15.3317719

495 C	10.5525297	27.8248795	16.5279095
496 C	10.35587517	28.48843379	17.77668508
497 C	10.82294087	27.91168725	19.01169304
498 C	10.6694477	28.62079217	20.19306505
499 H	8.408511027	29.73551456	9.482158715
500 H	8.191038898	30.98283945	11.53535681
501 H	8.388208841	31.02953255	14.14419452
502 H	11.00879202	28.18569863	21.11019986
503 H	10.90007469	26.80431901	13.99453052
504 H	10.49932259	26.65222812	11.53766441
505 H	9.649772372	27.49504704	9.536647578
506 H	10.0723925	30.55074274	21.14489832
507 H	9.174233809	31.5104089	18.98440894
508 H	8.774205225	31.16863349	16.53110772
509 H	11.13917092	26.94395548	16.49517429
510 H	11.29043243	26.89723375	19.04412602

Table A.5: the coordinates of the first time step in the MD simulation for the PbS QD
with the 7 C -ligand, used as the starting setup in the MD simulation.
A. $6 \quad \mathrm{PbS}+9 \mathrm{C}$ and Tetracene

Atom	X	Y	Z
1 Pb	27.09139027	19.72181427	14.69924322
2 Pb	17.30954459	26.09293036	22.18611119
3 Pb	27.43246883	18.2790461	29.68379212
4 Pb	28.04793652	24.16786227	20.3856889
5 Pb	27.59644139	10.85806474	21.48720196
6 Pb	23.09403898	19.41017348	29.2624994
7 Pb	29.73746233	21.52252516	17.23366545
8 Pb	30.40785389	25.53063882	23.51039742
9 Pb	27.14786412	27.77591832	22.67914234
10 Pb	27.95733565	17.21628003	17.53350888
11 Pb	24.02676951	18.67610489	17.37692625
12 Pb	27.36200424	24.58234866	26.18123295
13 Pb	25.50870507	14.28379422	30.07599018
14 Pb	15.38877213	15.86634675	19.86290314
15 Pb	25.12471466	16.02618357	20.32761298
16 Pb	29.13078339	14.7813287	21.18637604
17 Pb	16.79831776	12.60680254	23.1362925
18 Pb	19.83266402	27.312721	25.5693368
19 Pb	15.36175662	15.70122544	25.70878702
20 Pb	26.62675376	20.03932256	20.29654646
21 Pb	25.49631562	15.54319712	14.84699255
22 Pb	23.80580526	17.14445293	32.45842467
23 Pb	24.82700644	16.69232126	26.81795389
24 Pb	28.74788612	15.40479603	27.54703805
25 Pb	23.7757275	26.04485447	26.08105442
26 Pb	14.54949061	18.59657121	22.64349273
27 Pb	25.81055445	22.99688163	17.19902169
28 Pb	21.89865167	24.15834057	16.78774069
29 Pb	20.33793286	27.21870939	19.43809434
30 Pb	30.72985328	18.70774247	20.9067234
31 Pb	32.35691241	15.99218554	23.80388935
32 Pb	33.05622339	20.10993142	23.60777296
33 Pb	31.84073481	22.93818975	20.84223222
34 Pb	29.19196678	21.66364408	23.460282
35 Pb	27.71636442	17.66391245	23.64964219
36 Pb	26.29865913	20.8100709	26.62765675
37 Pb	25.70872795	21.04269143	32.37423643
38 Pb	24.48486393	23.70911748	29.08860667
39 Pb	25.03731183	23.02512853	23.12183165
40 Pb	20.59339123	24.8462086	28.9017657
41 Pb	21.42308097	22.38991037	31.83518561
42 Pb	21.22955117	24.80550305	22.76608901
43 Pb	23.84513811	19.03224232	23.21955063
44 Pb	30.35877534	19.0606656	26.99328018
45 Pb	31.85201579	22.81538739	26.59123048
46 Pb	23.01936977	11.99252534	20.46727971
47 Pb	24.56353042	9.910637038	24.01594668
48 Pb	20.40424379	11.13865698	23.57537861
49 Pb	22.85389645	12.70012744	26.72029598
50 Pb	22.704928	28.43901091	23.02736769
51 Pb	22.25218087	21.8074804	25.93466455
52 Pb	24.73247497	25.90470875	20.28411324
53 Pb	21.60307269	17.6659549	14.24005003
54 Pb	22.45146045	14.56388502	17.65862399
55 Pb	18.47638521	16.10475914	16.83967559

56 Pb	19.42427771	13.95577756	20.06916288
57 Pb	20.89404895	17.78253531	20.09234859
58 Pb	22.40303769	15.23289554	23.50102183
59 Pb	18.1306802	16.60335373	22.92580627
60 Pb	18.84357675	14.01901384	26.10106945
61 Pb	20.73801454	17.89113232	25.97187477
62 Pb	21.792889	15.45372743	29.65057415
63 Pb	17.50023221	17.12169574	29.12757284
64 Pb	20.26289478	18.65888681	31.97213382
65 Pb	28.71439497	22.07211532	29.41476525
66 Pb	23.62513656	21.26564868	14.37243501
67 Pb	29.9868066	12.43990464	24.74485183
68 Pb	26.23692561	13.54417671	24.16693075
69 Pb	22.67739437	21.7714045	19.93341028
70 Pb	27.05600888	11.17512698	27.568852
71 Pb	20.0239523	20.45509853	16.9250618
72 Pb	26.78423491	13.1931655	17.80445035
73 Pb	16.9376511	19.64751199	19.00088426
74 Pb	18.79619938	23.40938679	19.3446484
75 Pb	19.80906994	20.74064009	22.87686224
76 Pb	15.88703127	22.11730013	22.35869131
77 Pb	16.76603497	19.72705328	25.46860096
78 Pb	18.35512363	23.44204943	25.65809932
79 Pb	18.97824758	21.03186788	28.78906312
80 S	21.94952401	22.37835252	29.23747954
81 S	21.06242423	24.8789747	25.70362314
82 S	30.43163005	19.01090234	23.63946155
83 S	25.23389319	15.94863733	17.45071503
84 S	26.81534556	19.81160339	17.36299671
85 S	26.35136851	13.25522553	21.14890096
86 S	23.02930103	21.40371728	16.96467464
87 S	27.84858034	24.41927456	23.1813482
88 S	24.17527005	18.45814915	14.41352822
89 S	27.82971272	17.56026179	20.67880917
90 S	25.82371348	14.06589808	27.27173394
91 S	23.97525026	19.06225456	20.31681314
92 S	31.90562947	22.56793061	23.67477553
93 S	15.73044341	15.33268315	23.05708424
94 S	25.06681215	16.36899868	23.76652512
95 S	26.50735907	20.44928429	23.36877723
96 S	21.95251339	24.61550173	19.85803675
97 S	27.41162105	18.13029233	26.82360851
98 S	25.58239762	23.09284508	20.11338149
99 S	29.20949799	22.07872465	26.30819999
100 S	22.76155766	19.59975493	32.27664292
101 S	20.11447052	27.3271262	22.4172333
102 S	23.64916841	19.48345683	26.25762395
103 S	23.47766245	12.59549859	24.02388045
104 S	24.46870157	16.87931931	29.88039302
105 S	25.75265402	20.81764658	29.39265782
106 S	29.41553428	21.51355279	20.6633843
107 S	22.5384801	21.74647035	23.05381812
108 S	24.0915602	26.13514816	22.94243419
109 S	24.79615589	23.27633234	25.97723984
110 S	27.49583787	10.9206587	24.47084457
111 S	21.07616143	17.77858595	16.99152302
112 S	22.46895966	15.34798736	20.33175282
113 S	18.22522177	16.67508783	19.69025773
114 S	19.32421114	13.95546046	23.25455231
115 S	21.07869367	17.95881482	23.18814062
116 S	22.06789946	15.37542386	26.49533662
117 S	18.00694259	16.91577914	26.17046422
118 S	20.29182375	18.39308266	29.33150599
119 S	20.0746528	20.71882384	19.82427477
120 S	17.22683027	19.52849542	22.7030136
121 S	18.54801274	23.76821044	22.48357027
122 S	19.38499057	20.52315563	25.68130329
123 S	28.99239097	14.91662757	24.18803404
124 H	19.34405407	23.66195334	16.43741048
125 O	19.73686543	23.14408609	17.15516201
126 O	17.03239575	25.96460038	24.91996446
127 H	20.45657695	10.98516047	20.12783191
128 C	29.11091585	22.11668327	13.87928627
129 O	29.01915134	21.21162345	14.83924461
130 O	28.41441413	22.1627108	12.87347452
131 H	29.90545193	22.81232059	14.05826008
132 H	22.99200627	12.89412302	30.23959446
133 O	23.26154181	13.40451248	29.47613532
134 O	22.81710941	15.1233759	14.04164326
135 C	22.25026519	14.00371176	14.25477775
136 C	22.56200264	29.09033264	19.32568412
137 O	22.6628123	28.0203058	20.0524165
138 O	21.49685377	29.42626848	18.81519039
139 H	23.47089355	29.69681577	19.263354
140 C	19.49908929	13.73198216	30.49673607
141 O	19.05318148	14.53889955	29.64388982

142 O	20.69440703	13.56532971	30.87629074
143 H	18.74845997	13.04897315	30.96104349
144 C	20.07557216	28.40136121	28.33183856
145 O	20.50868056	29.14558293	27.39897239
146 O	19.39744272	27.31531996	28.14905904
147 H	20.34866523	28.60835794	29.4113855
148 H	21.96717007	28.80911004	25.75687059
149 O	22.04066213	28.04489627	25.20605186
150 H	15.03001067	26.20306171	17.38055624
151 O	17.04548581	24.76771229	17.96719593
152 C	26.18663033	30.30181541	21.33094948
153 O	27.42801802	29.87199603	21.45474625
154 O	25.16898647	29.67890151	21.61421327
155 H	26.02688089	31.42644578	21.05281821
156 H	26.47474859	22.25738273	14.11296904
157 O	25.93523999	21.87706843	14.74368455
158 C	30.9496115	18.19539772	17.37139319
159 O	29.97372698	18.78766172	16.80779634
160 H	26.3321403	27.34151931	26.14244869
161 O	26.29188069	26.56128682	26.74061451
162 O	16.43912467	22.33604227	24.62152648
163 H	15.62373288	22.80148207	24.84215575
164 C	24.47196496	9.193026226	20.01876905
165 O	25.13955031	9.674814077	20.99387113
166 O	23.41833375	9.756411786	19.53800975
167 H	24.68530057	8.196444299	19.65400703
168 H	18.77033546	21.15780323	31.98080838
169 O	19.52248012	20.91463536	31.41076633
170 C	20.49214061	20.44855281	13.02363562
171 O	20.57037106	20.00062131	14.31885873
172 H	19.96846486	11.35531854	26.23812101
173 O	20.42125249	12.01244337	25.77668774
174 O	22.09232917	13.45932479	15.37761108
175 H	21.71478963	13.37160292	13.5022576
176 C	33.42530791	13.16251774	23.10955121
177 O	32.4960782	13.05067463	23.95001177
178 O	33.98518322	14.2300236	22.7449851
179 H	33.84617661	12.14035584	22.67600669
180 C	28.22736172	22.03106849	33.05133211
181 O	28.04832219	21.48719682	31.8972848
182 O	27.37321661	22.14308702	33.94719669
183 H	29.24042149	22.42905289	33.18584114
184 H	16.3001398	22.39245181	18.39124235
185 O	16.89136246	21.97265794	19.00618448
186 H	15.21257458	26.19784916	25.71485502
187 O	20.72520946	11.81943123	20.68048559
188 C	22.23488139	8.04248599	23.93400952
189 O	22.01672089	9.29736465	23.79489182
190 O	23.24171238	7.580262726	24.51840424
191 H	21.45965651	7.28748824	23.625893
192 H	31.04948455	16.64602903	28.71317812
193 O	30.33402579	16.93016713	28.09283842
194 H	31.99743404	18.59690156	17.37563866
195 O	30.70089072	17.20656796	18.17093611
196 H	19.75871319	13.49324119	17.25209492
197 O	19.8476548	14.26760923	17.79343731
198 O	14.04136968	23.60770649	23.19669219
199 H	11.93644437	24.83455841	22.3008278
200 H	30.04667209	28.28572849	23.35837008
201 O	29.56205128	27.59456484	22.86562966
202 O	28.0606564	11.29908107	17.01405689
203 H	28.50329734	9.391126197	17.45210181
204 C	32.21322886	23.03156086	17.0827666
205 O	31.93966592	22.21093527	16.09281107
206 O	31.52612701	23.20532108	18.16746621
207 H	33.20962943	23.45237397	17.05934874
208 H	17.93149774	9.898850045	24.3643242
209 O	18.10805254	10.73047549	23.99984242
210 O	32.65361915	18.86320032	27.88308806
211 H	34.46935065	19.82955301	27.7496925
212 C	30.50594391	26.05727914	26.75984984
213 O	31.60857784	25.45719836	26.75547015
214 O	29.55512809	25.81993965	25.93886249
215 H	30.32880055	26.84474403	27.46759267
216 H	34.56600897	17.19012731	22.69655598
217 O	33.79808785	17.48356895	23.21448606
218 O	27.00432391	26.79658713	20.55494941
219 H	27.27138827	27.33363843	19.79531285
220 C	15.65359877	14.04886173	28.73769475
221 O	16.06570976	15.20583329	28.22364377
222 O	15.59228298	12.94804148	28.06710162
223 H	15.45468265	14.00728712	29.83950916
224 H	19.69219925	24.82698343	31.62099006
225 O	20.01023458	24.08515973	31.0141372
226 O	28.38146652	10.60537461	19.1711576
227 C	28.30532165	10.40886857	17.90616421

228 C	30.20222123	12.75023861	28.30638989
229 O	29.44458355	12.60473476	27.27922129
230 O	30.3173967	13.7885244	28.93564688
231 H	30.79728905	11.85513672	28.61837127
232 H	17.25636291	19.56704809	16.26717925
233 O	17.70395969	19.11367083	16.99977704
234 C	14.0731884	24.74355315	22.65936225
235 O	15.00900413	25.25473583	21.97809865
236 H	17.80784379	23.79913919	28.51283162
237 O	18.66828521	23.48747918	28.14659662
238 H	28.2476347	10.62799222	31.31682129
239 O	28.39881768	10.28015746	29.40080036
240 H	22.80727363	11.84614344	17.57832746
241 O	23.21994698	12.52276177	18.17635891
242 H	27.06680612	24.97242965	28.71236293
243 O	26.98995491	24.03693469	28.37850773
244 H	29.21848429	14.79347967	18.22171655
245 O	28.30049744	14.81880493	18.53252861
246 O	23.0481369	25.73430995	28.49469365
247 H	23.31604398	26.55758859	28.95999309
248 H	25.2305752	25.53042629	16.8642347
249 O	24.57440715	24.84326513	17.10866435
250 C	16.12056052	25.70772553	25.77039992
251 O	16.22546369	24.83226214	26.68790334
252 H	30.48780634	19.63719543	29.79033469
253 O	29.78351176	19.82698859	29.15790035
254 O	26.591697	11.42965243	30.26170092
255 C	27.73215739	10.79834879	30.3696859
256 H	12.98788572	21.14571806	23.15387342
257 O	13.71024662	20.67161746	22.69988047
258 O	33.06788932	20.66495056	26.58711657
259 C	33.38210624	19.79757166	27.51417975
260 C	31.19583693	23.73964909	29.77243535
261 O	31.28480793	22.70499005	29.06334995
262 O	30.08287634	24.06231056	30.36112555
263 H	32.04207778	24.41342339	29.79155082
264 H	13.70389695	18.01022159	25.32443349
265 O	14.5753828	17.91990953	24.94318115
266 O	21.50025642	20.73719734	12.41516628
267 H	19.00582495	21.90468254	12.91463613
268 C	24.74959925	24.24703724	32.21210981
269 O	25.04274356	25.01100586	31.22719367
270 O	24.30053551	23.03707584	32.10527912
271 H	24.7531309	24.68596833	33.23042335
272 C	28.43451918	25.00215446	16.8128991
273 O	29.14675136	24.08227222	16.34071379
274 O	27.5193534	24.90953763	17.68123537
275 H	28.60411868	25.98689276	16.39392424
276 C	13.957483	19.00568588	18.71945297
277 O	14.63795703	19.79809927	17.98871597
278 O	14.54290828	18.26290599	19.60228905
279 H	12.22583462	17.98449015	17.92413933
280 H	16.17216148	13.08455443	26.27808752
281 O	16.56911679	13.47359676	25.4411852
282 O	17.51193862	18.08376103	31.44333977
283 H	15.8625042	18.68154584	32.46600268
284 H	31.63764567	15.7759904	20.90404957
285 O	31.09162993	16.20228747	21.6609911
286 H	27.36194902	12.98177961	15.23223741
287 O	27.09645715	13.84329056	15.60985769
288 C	30.90391908	12.19835556	21.36060657
289 O	29.7662628	12.01623053	21.89935064
290 O	31.31666473	13.23913635	20.76845848
291 H	31.70314298	11.36137154	21.45449781
292 H	21.3564252	15.64035078	32.34028322
293 O	21.63198564	16.41669283	31.81979017
294 O	15.451374	17.62988202	30.74522747
295 C	16.23964963	18.07988041	31.58304164
296 H	33.4657177	19.77270897	20.96453022
297 O	32.71654886	20.20819747	21.39938422
298 H	27.46318657	17.94647278	34.07487152
299 O	28.49304165	17.99437642	32.33465084
300 H	27.89067399	16.68255604	14.35995559
301 O	27.22026142	17.08454384	14.94359021
302 O	26.31636446	18.60035435	32.58627422
303 C	27.48962078	18.14456333	32.99789247
304 C	14.40901786	15.71642591	17.16252303
305 O	15.70214932	15.79431895	17.51264652
306 O	13.45323681	15.40215849	17.89791636
307 H	13.90856735	17.45126129	16.17461565
308 C	20.09305654	26.5077799	15.65927947
309 O	20.14640361	25.33414377	15.16289486
310 O	20.43603894	26.64341983	16.88057047
311 H	18.6844841	27.65595829	14.67624265
312 C	16.8309496	12.22724789	19.57091952
313 O	16.61005192	13.3291851	20.155391

314 O	17.97148447	11.85457419	19.15004224
315 H	16.02964509	11.4661654	19.39222727
316 C	24.71423228	9.104332594	27.32977822
317 O	25.71074317	9.217803545	28.0956725
318 O	24.31886319	9.933949171	26.45864941
319 H	24.23018617	8.132920051	27.33538758
320 C	16.0158696	20.23914702	28.92726342
321 O	16.49269917	21.35127316	29.25873943
322 O	16.66313034	19.29407753	28.30313597
323 H	14.99491352	19.89734439	29.40209024
324 C	18.52716683	15.59677095	13.88908497
325 O	19.29275413	16.51571846	14.45320719
326 O	17.81095366	14.81077242	14.56277788
327 H	19.13990072	16.44273267	12.05295105
328 H	28.29061401	15.64232	30.55521071
329 O	27.61422737	15.77723493	29.82327592
330 H	30.93517502	25.90421278	20.80763771
331 O	30.72576967	25.02630299	21.28875843
332 C	16.68955396	25.64022183	18.75016603
333 O	17.41526893	26.01618661	19.77814563
334 C	19.41244282	13.79035887	7.110040331
335 C	17.88229165	13.53336366	7.414142708
336 C	17.38656846	14.16908323	8.667982279
337 C	17.81817937	13.40414859	9.944347947
338 C	16.96016271	13.80136904	11.21322191
339 C	17.15699851	15.29214181	11.75703372
340 C	18.55051886	15.58354338	12.36650962
341 H	19.30357539	13.48071501	4.881433332
342 H	20.07493118	13.41771732	7.944448237
343 H	19.56412468	14.89332188	7.171733483
344 H	17.52648005	12.52702754	7.406110825
345 H	17.35606467	13.95936361	6.634790578
346 H	16.30163651	14.23282588	8.546984544
347 H	17.67369288	15.22005116	8.75979451
348 H	18.8775964	13.61284595	10.2299747
349 H	17.65423941	12.30164239	9.865611992
350 H	17.20445225	13.0348262	12.10505163
351 H	15.87187095	13.7598705	11.07594612
352 H	16.54827327	15.41894921	12.60067657
353 H	16.89889396	16.07519641	11.10511438
354 H	19.25317647	14.82131678	12.04633493
355 C	17.08059139	31.52859283	9.943895274
356 C	18.25545383	30.6670679	10.53927948
357 C	18.16097884	30.6496667	12.07332354
358 C	19.34382666	29.94088347	12.76477768
359 C	19.50272997	28.45875887	12.34367569
360 C	20.45261096	27.6397437	13.32125415
361 C	19.76632674	27.65670366	14.72845923
362 H	16.25943673	30.90326924	9.552382747
363 H	16.92106266	32.57274732	7.946141594
364 H	16.58993306	32.3365218	10.55508861
365 H	19.21666166	31.15787419	10.21369272
366 H	18.18495936	29.71933871	10.03316267
367 H	17.21728144	30.29846407	12.41565137
368 H	18.30624093	31.70760613	12.37476007
369 H	19.28959514	30.15833808	13.82775089
370 H	20.33216837	30.38350971	12.47964286
371 H	19.87200804	28.39094853	11.31774307
372 H	18.48659487	28.01513255	12.30825111
373 H	21.53190909	27.94504834	13.37527666
374 H	20.44347894	26.6261478	13.0239263
375 H	20.02544065	28.53249947	15.30044678
376 C	8.256116686	16.86601662	11.84413434
377 C	9.616521113	16.72812898	11.18012008
378 C	10.84671947	17.21995764	12.00499718
379 C	11.25066873	16.28939901	13.2004421
380 C	12.73738811	16.431155	13.75250667
381 C	12.98530706	15.70949534	15.06345727
382 C	14.1424003	16.35441617	15.83916765
383 H	8.317954908	16.44228727	12.87261247
384 H	7.462690061	15.0256926	10.96711998
385 H	7.974866	17.92035986	11.91185185
386 H	9.636159999	17.29563587	10.22709011
387 H	9.710336623	15.70958622	10.84969624
388 H	10.61047768	18.19275671	12.38689079
389 H	11.67416436	17.2821791	11.27052732
390 H	11.16038978	15.21693482	12.92884901
391 H	10.6074798	16.41890527	14.07265411
392 H	12.97830489	17.54190505	13.95727439
393 H	13.45316646	16.09775272	13.01499005
394 H	13.17072567	14.68206731	14.87801787
395 H	12.06220739	15.74154742	15.7048015
396 H	15.03098662	16.3953771	15.16631298
397 C	5.844135119	21.99789538	16.60617633
$\begin{aligned} & 398 \text { C } \\ & 399 \text { C } \end{aligned}$	$\begin{aligned} & 7.30058907 \\ & 8.049733096 \end{aligned}$	22.21197477 20.92735589	17.08778207

400 C	9.57379343	21.14626061	17.41498394
401 C	10.29844927	19.81022739	17.72476665
402 C	11.84862531	20.10626566	17.88823253
403 C	12.50112499	18.87895334	18.5713376
404 H	5.459329264	21.22605785	17.3048633
405 H	5.809770628	21.53002111	15.63531886
406 H	5.314765744	23.83309212	17.60340372
407 H	7.339855459	22.75331373	18.05085227
408 H	7.827945978	22.88666047	16.48253367
409 H	7.968915936	20.30117497	16.24424583
410 H	7.716915868	20.17548289	17.95125339
411 H	9.837869387	21.81654191	18.1680312
412 H	10.00264094	21.55267652	16.53430097
413 H	10.27063583	19.12343334	16.91345216
414 H	9.892008562	19.3785795	18.66671319
415 H	12.08903929	21.04250373	18.48317603
416 H	12.29681984	20.25305805	16.89667283
417 H	12.06183086	18.74296703	19.56101345
418 C	14.04458101	19.26766814	10.97035887
419 C	14.40412027	20.75013564	11.28455571
420 C	14.20879919	21.06595476	12.82471703
421 C	15.32831762	20.44489902	13.79397857
422 C	16.69253316	21.13338719	13.58896266
423 C	17.90769587	20.15747767	13.29285609
424 C	19.09582515	20.88650064	12.61314136
425 H	14.76132814	18.59518514	11.50362556
426 H	13.22425728	19.56958076	9.091459044
427 H	13.13119913	19.20758618	11.55035571
428 H	13.75242019	21.31807954	10.59839954
429 H	15.35818632	20.93221577	10.97166288
430 H	13.21174533	20.80283557	13.15496864
431 H	14.27594771	22.12224621	12.86605086
432 H	15.46511967	19.38193734	13.50379486
433 H	14.99888355	20.47215317	14.8052088
434 H	17.00522395	21.71292105	14.45295794
435 H	16.59079108	21.85913551	12.79859169
436 H	17.71711219	19.31809984	12.62998997
437 H	18.2840045	19.71874114	14.26201611
438 H	18.99162483	21.01331406	11.54204781
439 C	8.1032796	31.4864184	20.56962314
440 C	9.455999643	30.98580758	21.14236114
441 C	9.549403571	29.46153557	21.19916056
442 C	10.96615363	28.98466703	21.6934096
443 C	11.07048907	27.482546	22.1471026
444 C	12.60171639	26.94420945	22.13457197
445 C	12.64705011	25.52403444	22.79448283
446 H	8.169993197	31.57412573	19.47851773
447 H	7.245522137	33.45445785	20.33731635
448 H	7.340355437	30.74787051	20.83871875
449 H	9.650280224	31.43038159	22.09494812
450 H	10.31489611	31.30858253	20.46342437
451 H	9.405008676	28.88629906	20.21907539
452 H	8.694684705	29.08763032	21.8219346
453 H	11.27798211	29.75688365	22.44349077
454 H	11.73862447	29.08026115	20.88218828
455 H	10.44458182	26.90919924	21.41794275
456 H	10.66728708	27.33625146	23.15212653
457 H	13.30145177	27.48865144	22.82380473
458 H	13.03170836	26.91598976	21.15450182
459 H	12.44997457	25.61498761	23.88582295
460 C	18.39659309	33.25529258	18.64748442
461 C	17.11487738	32.45842154	18.68584466
462 C	17.25950517	30.90232603	18.51644959
463 C	15.91713577	30.16681289	18.28571741
464 C	16.24178632	28.63592783	18.27988258
465 C	15.16390833	27.77492931	18.92034814
466 C	15.26595155	26.32842946	18.45635807
467 H	19.29133272	32.75164331	18.98994603
468 H	17.27427362	34.99307898	19.47773723
469 H	18.60826846	33.43249786	17.5559169
470 H	16.40685389	32.74721421	17.87862338
471 H	16.50699299	32.65182043	19.60258269
472 H	17.66937679	30.53595843	19.45682547
473 H	17.91278429	30.67293711	17.62583267
474 H	15.46201304	30.48392273	17.33302592
475 H	15.1964775	30.42670891	19.06383044
476 H	17.11778247	28.41440708	18.9309228
477 H	16.51301123	28.34257021	17.27750429
478 H	14.12310263	28.21544731	18.76522807
479 H	15.31125642	27.83458217	19.97362512
480 H	14.60769048	25.63388231	19.01712897
481 C	12.65463142	24.41871238	12.65265379
482 C	11.66486515	24.92272253	11.83336455
483 C	10.50175885	25.54636892	12.45038728
484 C	9.573706572	26.26321484	11.60988629
485 C	8.58263705	27.22402364	13.7060766

486 C	9.361201105	26.30792021	14.49175525
487 C	10.41617882	25.61632458	13.90626182
488 C	11.41791073	24.94664475	14.67101348
489 C	12.50498755	24.36482473	14.08177932
490 C	5.590232933	31.10301943	12.33753739
491 C	6.365255718	30.14667184	11.64384228
492 C	7.099985575	29.11012549	12.2799361
493 C	7.959224641	28.25230039	11.5792041
494 C	8.702036613	27.25092107	12.25154291
495 C	7.652599777	28.03680721	14.43130678
496 C	6.917923857	28.98227181	13.74836544
497 C	5.889248998	29.81467435	14.42250719
498 C	5.305786014	30.82356854	13.70778741
499 H	13.54139039	24.11018683	12.19359912
500 H	11.65646645	24.99009791	10.77350961
501 H	9.669394629	26.20958241	10.48268307
502 H	4.519459911	31.43048059	14.03829953
503 H	9.232574176	26.17295352	15.54944082
504 H	11.50754402	25.03121361	15.75505685
505 H	13.34720073	23.87319236	14.67012416
506 H	5.120200227	31.94944798	11.81968348
507 H	6.440084984	30.30616425	10.59307425
508 H	8.038476414	28.45643149	10.43602903
509 H	7.622774058	27.9147178	15.53332624
510 H	5.560755781	29.57736743	15.41540869
511 C	18.26062456	34.58080107	19.48543693
512 C	18.59947435	34.18568487	20.97232573
513 H	19.72906033	34.04122767	21.0116006
514 H	18.03202244	33.27815853	21.19029378
515 H	18.27302309	34.96577777	21.62237774
516 H	18.9361639	35.32282093	19.17161391
517 C	7.665765221	32.84654667	21.16066301
518 C	6.599453458	32.78214976	22.26708629
519 H	6.847802569	32.15460852	23.18240662
520 H	5.637880953	32.50470465	21.8463018
521 H	6.481071903	33.79757834	22.71595296
522 H	8.515557258	33.39632267	21.62117019
523 C	13.93598452	18.84031569	9.499477541
524 C	15.31155658	18.82847712	8.795204316
525 H	15.96007841	17.93550966	9.082828391
526 H	15.89585632	19.70258649	9.013937222
527 H	15.17110132	18.69386618	7.714223715
528 H	13.46971815	17.85971984	9.392160109
529 C	5.03339581	23.28627165	16.68927643
530 C	5.303256775	24.21209503	15.47463486
531 H	4.745078673	23.78097032	14.65392444
532 H	6.37905962	24.19517254	15.04984318
533 H	5.034746067	25.24256436	15.7226683
534 H	3.977661135	23.00566292	16.60220672
535 C	7.086062994	16.02897988	11.24293875
536 C	5.890736625	16.03380538	12.20953138
537 H	5.616360901	17.07955058	12.41814819
538 H	6.076563423	15.614831	13.23115163
539 H	5.033845678	15.44452505	11.81135764
540 H	6.79245995	16.38390855	10.24200179
541 C	17.65917568	32.19453226	8.633033312
542 C	18.80195001	33.30859187	8.792946904
543 H	19.7725351	32.92995091	9.248450343
544 H	18.57821711	34.16673403	9.501747636
545 H	19.0192453	33.59165923	7.792566906
546 H	18.04436572	31.35946316	8.100197168
547 C	19.94809497	13.25225684	5.766196016
548 C	21.42798549	13.69292648	5.386071135
549 H	22.10198372	13.47790994	6.195775153
550 H	21.54208547	14.7763495	5.117300937
551 H	21.63493675	13.08509757	4.468670805
552 H	19.90454645	12.1352161	5.823904751

Table A.6: the coordinates of the first time step in the MD simulation for the PbS QD
with the 9C-ligand, used as the starting setup in the MD simulation.

Appendix B

Excitation energy results

B. 1 Tetracene

	PBE	PBE (hq)		B3LYP	B3LYP (hq)	CAMY- B3LYP	CAM- B3LYP	CAM- B3LYP (TDA)

Table B.1: the excitation energies of the corresponding states as calculated for the corresponding functionals with the settings as described in the method section of tetracene, section 3.3.1. All values for the excitation energies are in eV and are relative to the ground state energy.

B. 2 Pentacene

	PBE	B3LYP	CAMY- B3LYP	CAM- B3LYP	CAM-B3LYP (TDA)	M06-2X
S1 (mon)	1.62	1.89	2.14	2.20	2.50	2.11
S2 (mon)	2.37	2.92	3.38	3.39	3.46	3.33
S3 (mon)	2.93	3.22	3.42	3.49	3.71	3.40
S4 (mon)	2.97	3.24	3.62	3.83	3.88	3.73
S5 (mon)	3.99	3.96	4.50	4.55	4.86	4.48
T1 (mon)	0.93	0.71	N.A.	-0.90	0.95	-1.47
T2 (mon)	2.07	1.98	N.A.	1.55	2.08	0.66
T3 (mon)	2.38	2.92	N.A.	2.69	3.06	2.17
T4 (mon)	2.80	2.98	N.A.	3.10	3.19	2.95
T5 (mon)	2.93	3.00	N.A.	3.23	3.33	3.01
S1 (dim)	0.78	1.28	1.89	2.06	2.17	2.04
S2 (dim)	1.44	1.81	2.09	2.15	2.44	2.33
S3 (dim)	1.59	1.85	2.15	2.31	2.49	2.38
S4 (dim)	1.66	2.06	2.71	2.97	2.98	2.85
S5 (dim)	1.88	2.56	3.23	3.37	3.43	3.38
T1 (dim)	0.72	0.62	N.A.	-0.96	0.89	0.70
T2 (dim)	0.90	0.66	N.A.	-0.94	0.91	0.72
T3 (dim)	0.94	1.31	N.A.	1.46	2.01	1.80
T4 (dim)	1.51	1.90	N.A.	1.47	2.03	1.82
T5 (dim)	1.85	1.92	N.A.	2.22	2.23	2.10

Table B.2: the excitation energies of the corresponding states as calculated for the corresponding functionals with the settings as described in the method section of pentacene, section 3.3.1. All values for the excitation energies are in eV and are relative to the ground state energy.

Appendix C

Coupling of Setup 9C versus variables

Figure C.1: the coupling of setup 9C averaged per closest intermolecular distance bin, one set of 10 bins (solid lines) and one set of 20 bins (dashed lines); the number of coupling values belonging to a bin is displayed at the top (for 20 bins) and bottom (for 10 bins) of the figure.

Figure C.2: the coupling of setup 9C averaged per distance bin, one set of 10 bins (solid lines) and one set of 20 bins (dashed lines); the number of coupling values belonging to a bin is displayed at the top (for 20 bins) and bottom (for 10 bins) of the figure.

Figure C.3: the coupling of setup 9C averaged per rotational bin, one set of 10 bins (solid lines) and one set of 20 bins (dashed lines); the number of coupling values belonging to a bin is displayed at the top (for 20 bins) and bottom (for 10 bins) of the figure.

Figure C.4: the coupling of setup 9C averaged per angular bin, one set of 10 bins (solid lines) and one set of 20 bins (dashed lines); the number of coupling values belonging to a bin is displayed at the top (for 20 bins) and bottom (for 10 bins) of the figure.

Figure C.5: the coupling of setup 9C averaged per parabolicity-bin, one set of 10 bins (solid lines) and one set of 20 bins (dashed lines); the number of coupling values belonging to a bin is displayed at the top (for 20 bins) and bottom (for 10 bins) of the figure.

Bibliography

[1] Alexey V. Akimov and Oleg V. Prezhdo. The pyxaid program for non-adiabatic molecular dynamics in condensed matter systems. Journal of Chemical Theory and Computation, 9(11):4959-4972, 2013. PMID: 26583414.
[2] Alexey V. Akimov and Oleg V. Prezhdo. Nonadiabatic dynamics of charge transfer and singlet fission at the pentacene/c60 interface. Journal of the American Chemical Society, 136(4):1599-1608, 2014. PMID: 24397723.
[3] Dylan H. Arias, Joseph L. Ryerson, Jasper D. Cook, Niels H. Damrauer, and Justin C. Johnson. Polymorphism influences singlet fission rates in tetracene thin films. Chem. Sci., 7:1185-1191, 2016.
[4] Jon M. Azpiroz, Jesus M. Ugalde, Lioz Etgar, Ivan Infante, and Filippo De Angelis. The effect of tio2 surface on the electron injection efficiency in pbs quantum dot solar cells: a first-principles study. Phys. Chem. Chem. Phys., 17:6076-6086, 2015.
[5] E.J. Baerends, T. Ziegler, J. Autschbach, D. Bashford, A. Berces, F.M. Bickelhaupt, C. Bo, P.M. Boerrigter, L. Cavallo, D.P. Chong, L. Deng, R.M. Dickson, D.E. Ellis, M. van Faassen, L. Fan, T.H. Fischer, C. Fonseca Guerra, M. Franchini, A. Ghysels, A. Giammona, S.J.A. van Gisbergen, A.W. Gotz, J.A. Groeneveld, O.V. Gritsenko, M. Gruning, S. Gusarov, F.E. Harris, P. van den Hoek, C.R. Jacob, H. Jacobsen, L. Jensen, J.W. Kaminski, G. van Kessel, F. Kootstra, A. Kovalenko, M.V. Krykunov, E. van Lenthe, D.A. McCormack, A. Michalak, M. Mitoraj, S.M. Morton, J. Neugebauer, V.P. Nicu, L. Noodleman, V.P. Osinga, S. Patchkovskii, M. Pavanello, P.H.T. Philipsen, D. Post, C.C. Pye,
W. Ravenek, J.I. Rodriguez, P. Ros, P.R.T. Schipper, H. van Schoot, G. Schreckenbach, J.S. Seldenthuis, M. Seth, J.G. Snijders, M. Sola, M. Swart, D. Swerhone, G. te Velde, P. Vernooijs, L. Versluis, L. Visscher, O. Visser, F. Wang, T.A. Wesolowski, E.M. van Wezenbeek, G. Wiesenekker, S.K. Wolff, T.K. Woo, and A.L. Yakovlev. ADF2014. SCM and Theoretical Chemistry and Vrije Universiteit and Amsterdam and The Netherlands, http://www.scm.com.
[6] Axel D. Becke. A new inhomogeneity parameter in density-functional theory. The Journal of Chemical Physics, 109(6):2092-2098, 1998.
[7] D. Beljonne, H. Yamagata, J. L. Brédas, F. C. Spano, and Y. Olivier. Charge-transfer excitations steer the davydov splitting and mediate singlet exciton fission in pentacene. Phys. Rev. Lett., 110:226402, May 2013.
[8] Timothy C. Berkelbach, Mark S. Hybertsen, and David R. Reichman. Microscopic theory of singlet exciton fission. ii. application to pentacene dimers and the role of superexchange. The Journal of Chemical Physics, 138(11), 2013.
[9] Timothy C. Berkelbach, Mark S. Hybertsen, and David R. Reichman. Microscopic theory of singlet exciton fission. iii. crystalline pentacene. The Journal of Chemical Physics, 141(7), 2014.
[10] Patrick R. Brown, Donghun Kim, Richard R. Lunt, Ni Zhao, Moungi G. Bawendi, Jeffrey C. Grossman, and Vladimir Bulovi. Energy level modification in lead sulfide quantum dot thin films through ligand exchange. ACS Nano, 8(6):5863-5872, 2014. PMID: 24824726.
[11] J. Burgos, M. Pope, Ch. E. Swenberg, and R. R. Alfano. Heterofission in pentacene-doped tetracene single crystals. physica status solidi (b), 83(1):249-256, 1977.
[12] D. M. Ceperley and B. J. Alder. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett., 45:566-569, Aug 1980.
[13] Wai-Lun Chan, Timothy C. Berkelbach, Makenzie R. Provorse, Nicholas R. Monahan, John R. Tritsch, Mark S. Hybertsen, David R. Reichman, Jiali Gao, and X.-Y. Zhu. The
quantum coherent mechanism for singlet fission: Experiment and theory. Accounts of Chemical Research, 46(6):1321-1329, 2013. PMID: 23581494.
[14] Wai-Lun Chan, Manuel Ligges, Askat Jailaubekov, Loren Kaake, Luis Miaja-Avila, and X.-Y. Zhu. Observing the multiexciton state in singlet fission and ensuing ultrafast multielectron transfer. Science, 334(6062):1541-1545, 2011.
[15] Christopher J. Cramer and Donald G. Truhlar. Density functional theory for transition metals and transition metal chemistry. Phys. Chem. Chem. Phys., 11:10757-10816, 2009.
[16] P. A. M. Dirac. Note on exchange phenomena in the thomas atom. Mathematical Proceedings of the Cambridge Philosophical Society, 26(3):376385, 1930.
[17] Furio Ercolessi. A molecular dynamics primer. Technical report, International School for Advanced Studies, 1997.
[18] E. Fermi. Un Metodo Statistico per la determinazione di Alcune priorieta dell' atome. Rend. Accad. Naz. Lincei, 6:602, 1927.
[19] C. Fonseca Guerra, J. G. Snijders, G. te Velde, and E. J. Baerends. Towards an order-n dft method. Theoretical Chemistry Accounts, 99(6):391-403, 1998.
[20] Mirko Franchini, Pierre Herman Theodoor Philipsen, Erik van Lenthe, and Lucas Visscher. Accurate coulomb potentials for periodic and molecular systems through density fitting. Journal of Chemical Theory and Computation, 10(5):1994-2004, 2014. PMID: 26580526.
[21] Mirko Franchini, Pierre Herman Theodoor Philipsen, and Lucas Visscher. The becke fuzzy cells integration scheme in the amsterdam density functional program suite. Journal of Computational Chemistry, 34(21):1819-1827, 2013.
[22] Paolo Giannozi. Metodi numerici in struttura elettronica. Technical report, Università di Udine, 2010.
[23] Carlo Giansante, Ivan Infante, Eduardo Fabiano, Roberto Grisorio, Gian Paolo Suranna, and Giuseppe Gigli. darker-than-black pbs quantum dots: Enhancing optical absorption of
colloidal semiconductor nanocrystals via short conjugated ligands. Journal of the American Chemical Society, 137(5):1875-1886, 2015. PMID: 25574692.
[24] S.W. Glunz, F. Feldmann, A. Richter, M. Bivour, C. Reichel, H. Steinkemper, J. Benick, and M. Hermle. The irresistible charm of a simple current flow pattern 25% with a solar cell featuring a full-area back contact. Proceedings of the 31st European Photovoltaic Solar Energy Conference and Exhibition, pages 259-263, 2015.
[25] Martin A. Green, Keith Emery, Yoshihiro Hishikawa, Wilhelm Warta, and Ewan D. Dunlop. Solar cell efficiency tables (version 45). Progress in Photovoltaics: Research and Applications, 23(1):1-9, 2015. PIP-14-274.
[26] Eric C. Greyson, Josh Vura-Weis, Josef Michl, and Mark A. Ratner. Maximizing singlet fission in organic dimers: Theoretical investigation of triplet yield in the regime of localized excitation and fast coherent electron transfer. The Journal of Physical Chemistry B, 114(45):14168-14177, 2010. PMID: 20184354.
[27] D.J. Griffiths. Introduction to Quantum Mechanics. Pearson international edition. Pearson Prentice Hall, 2005.
[28] D. R. Hartree. The wave mechanics of an atom with a non-coulomb central field. part i. theory and methods. Mathematical Proceedings of the Cambridge Philosophical Society, 24:89-110, 11928.
[29] E. Heinecke, D. Hartmann, R. Muller, and A. Hese. Laser spectroscopy of free pentacene molecules (i): The rotational structure of the vibrationless s1s0 transition. The Journal of Chemical Physics, 109(3):906-911, 1998.
[30] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136:B864-B871, Nov 1964.
[31] Ivan Kondov, , Martin ek, Claudia Benesch, Haobin Wang, *, and Michael Thoss*. Quantum dynamics of photoinduced electron-transfer reactions in dyesemiconductor systems: first-principles description and application to coumarin 343tio2. The Journal of Physical Chemistry C, 111(32):11970-11981, 2007.
[32] R. C. Johnson and R. E. Merrifield. Effects of magnetic fields on the mutual annihilation of triplet excitons in anthracene crystals. Phys. Rev. B, 1:896-902, Jan 1970.
[33] Jin Young Kim, Oleksandr Voznyy, David Zhitomirsky, and Edward H. Sargent. 25th anniversary article: Colloidal quantum dot materials and devices: A quarter-century of advances. Advanced Materials, 25(36):4986-5010, 2013.
[34] Thomas D. Khne. Second generation carparrinello molecular dynamics. Wiley Interdisciplinary Reviews: Computational Molecular Science, 4(4):391-406, 2014.
[35] Jingrui Li, Mattias Nilsing, Ivan Kondov, Haobin Wang, Petter Persson, Sten Lunell, and Michael Thoss. Dynamical simulation of photoinduced electron transfer reactions in dyesemiconductor systems with different anchor groups. The Journal of Physical Chemistry C, 112(32):12326-12333, 2008.
[36] Sanliang Ling. Optimisation of basis sets and pseudopotentials. Technical report, University College London, 2015.
[37] PerOlov Lowdin. On the nonorthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals. The Journal of Chemical Physics, 18(3):365-375, 1950.
[38] Fatemeh Mirjani, Nicolas Renaud, Natalie Gorczak, and Ferdinand C. Grozema. Theoretical investigation of singlet fission in molecular dimers: The role of charge transfer states and quantum interference. The Journal of Physical Chemistry C, 118(26):14192-14199, 2014.
[39] N. Monahan and X.-Y. Zhu. Charge transfer-mediated singlet fission. Annual Review of Physical Chemistry, 66(1):601-618, 2015. PMID: 25648486.
[40] Hazuki Morisaki, Takashi Koretsune, Chisa Hotta, Jun Takeya, Tsuyoshi Kimura, and Yusuke Wakabayashi. Large surface relaxation in the organic semiconductor tetracene. Nat Commun, 5, 112014.
[41] Dmitrii Nabok, Peter Puschnig, Claudia Ambrosch-Draxl, Oliver Werzer, Roland Resel, and Detlef-M. Smilgies. Crystal and electronic structures of pentacene thin films from grazing-incidence x-ray diffraction and first-principles calculations. Phys. Rev. B, 76:235322, Dec 2007.
[42] Noel M. O'boyle, Adam L. Tenderholt, and Karol M. Langner. cclib: A library for packageindependent computational chemistry algorithms. Journal of Computational Chemistry, 29(5):839-845, 2008.
[43] Priya V. Parandekar and John C. Tully. Mixed quantum-classical equilibrium. The Journal of Chemical Physics, 122(9):094102, 2005.
[44] Priya V. Parandekar and John C. Tully. Detailed balance in ehrenfest mixed quantumclassical dynamics. Journal of Chemical Theory and Computation, 2(2):229-235, 2006. PMID: 26626509.
[45] John P. Perdew, Kieron Burke, and Matthias Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett., 77:3865-3868, Oct 1996.
[46] John P. Perdew, Adrienn Ruzsinszky, Jianmin Tao, Viktor N. Staroverov, Gustavo E. Scuseria, and Gbor I. Csonka. Prescription for the design and selection of density functional approximations: More constraint satisfaction with fewer fits. The Journal of Chemical Physics, 123(6):062201, 2005.
[47] John P. Perdew and Yue Wang. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B, 45:13244-13249, Jun 1992.
[48] P.H.T. Philipsen, G. te Velde, E.J. Baerends, J.A. Berger, P.L. de Boeij, M. Franchini, J.A. Groeneveld, E.S. Kadantsev, R. Klooster, F. Kootstra, P. Romaniello, D.G. Skachkov, J.G. Snijders, C.J.O. Verzijl, G. Wiesenekker, and T. Ziegler. BAND2014. SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com.
[49] Felix Plasser, Giovanni Granucci, Jiri Pittner, Mario Barbatti, Maurizio Persico, and Hans Lischka. Surface hopping dynamics using a locally diabatic formalism: Charge transfer
in the ethylene dimer cation and excited state dynamics in the 2-pyridone dimer. The Journal of Chemical Physics, 137(22):22A514, 2012.
[50] Felix Plasser and Hans Lischka. Analysis of excitonic and charge transfer interactions from quantum chemical calculations. Journal of Chemical Theory and Computation, 8(8):27772789, 2012. PMID: 26592119.
[51] Felix Plasser, Michael Wormit, and Andreas Dreuw. New tools for the systematic analysis and visualization of electronic excitations. i. formalism. The Journal of Chemical Physics, 141(2), 2014.
[52] Albert Polman, Mark Knight, Erik C. Garnett, Bruno Ehrler, and Wim C. Sinke. Photovoltaic materials: Present efficiencies and future challenges. Science, 352(6283), 2016.
[53] Enrico Ronca, Gabriele Marotta, Mariachiara Pastore, and Filippo De Angelis. Effect of sensitizer structure and tio2 protonation on charge generation in dye-sensitized solar cells. The Journal of Physical Chemistry C, 118(30):16927-16940, 2014.
[54] E. Schrödinger. An Undulatory Theory of the Mechanics of Atoms and Molecules. Physical Review, 28:1049-1070, December 1926.
[55] J. C. Slater. A simplification of the hartree-fock method. Phys. Rev., 81:385-390, Feb 1951.
[56] Millicent B. Smith and Josef Michl. Singlet fission. Chemical Reviews, 110(11):6891-6936, 2010. PMID: 21053979.
[57] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. The Journal of Physical Chemistry, 98(45):11623-11627, 1994.
[58] A. Szabo and N.S. Ostlund. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory. Dover Books on Chemistry. Dover Publications, 1989.
[59] Maxim Tabachnyk, Bruno Ehrler, Simon Gélinas, Marcus L. Böhm, Brian J. Walker, Kevin P. Musselman, Neil C. Greenham, Richard H. Friend, and Akshay Rao. Resonant energy transfer of triplet excitons from pentacene to pbse nanocrystals. Nat Mater, 13(11):1033-1038, 112014.
[60] Yoshihiro Tawada, Takao Tsuneda, Susumu Yanagisawa, Takeshi Yanai, and Kimihiko Hirao. A long-range-corrected time-dependent density functional theory. The Journal of Chemical Physics, 120(18):8425-8433, 2004.
[61] G. te Velde and E. J. Baerends. Precise density-functional method for periodic structures. Phys. Rev. B, 44:7888-7903, Oct 1991.
[62] G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen, J. G. Snijders, and T. Ziegler. Chemistry with adf. Journal of Computational Chemistry, 22(9):931-967, 2001.
[63] L. H. Thomas. The calculation of atomic fields. Proceedings of the Cambridge Philosophical Society, 23:542, 1927.
[64] Nicholas J. Thompson, Mark W. B. Wilson, Daniel N. Congreve, Patrick R. Brown, Jennifer M. Scherer, Thomas S. Bischof, Mengfei Wu, Nadav Geva, Matthew Welborn, Troy Van Voorhis, Vladimir Bulović, Moungi G. Bawendi, and Marc A. Baldo. Energy harvesting of non-emissive triplet excitons in tetracene by emissive pbs nanocrystals. Nat Mater, 13(11):1039-1043, 112014.
[65] V.K. Thorsmolle and R.D. Averitt. Photoexcited carrier relaxation dynamics in pentacene probed by ultrafast optical spectroscopy : Influence of morphology on relaxation processes. Physica B, 404(1):3127-3130, 2009.
[66] Y. Tomkiewicz, R. P. Groff, and P. Avakian. Spectroscopic approach to energetics of exciton fission and fusion in tetracene crystals. The Journal of Chemical Physics, 54(10):45044507, 1971.
[67] John C. Tully. Molecular dynamics with electronic transitions. The Journal of Chemical Physics, 93(2):1061-1071, 1990.
[68] R. Turton. The Physics of Solids. Oxford University Press, 2000.
[69] Paul J. Vallett, Jamie L. Snyder, and Niels H. Damrauer. Tunable electronic coupling and driving force in structurally well-defined tetracene dimers for molecular singlet fission: A computational exploration using density functional theory. The Journal of Physical Chemistry A, 117(42):10824-10838, 2013. PMID: 24053123.
[70] S. H. Vosko, L. Wilk, and M. Nusair. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Canadian Journal of Physics, 58(8):1200-1211, 1980.
[71] Linjun Wang, Dhara Trivedi, and Oleg V. Prezhdo. Global flux surface hopping approach for mixed quantum-classical dynamics. Journal of Chemical Theory and Computation, 10(9):3598-3605, 2014. PMID: 26588504.
[72] G Wiesenekker and E J Baerends. Quadratic integration over the three-dimensional brillouin zone. Journal of Physics: Condensed Matter, 3(35):6721, 1991.
[73] Takeshi Yanai, David P Tew, and Nicholas C Handy. A new hybrid exchangecorrelation functional using the coulomb-attenuating method (cam-b3lyp). Chemical Physics Letters, 393(1):51-57, 2004.
[74] Jianhua Zhao, Aihua Wang, Martin A. Green, and Francesca Ferrazza. 19.8\% efficient honeycomb textured multicrystalline and 24.4% monocrystalline silicon solar cells. Applied Physics Letters, 73(14):1991-1993, 1998.
[75] Yan Zhao and Donald G. Truhlar. The m06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four m06-class functionals and 12 other functionals. Theoretical Chemistry Accounts, 120(1):215-241, May 2008.
[76] Paul M. Zimmerman, Franziska Bell, David Casanova, and Martin Head-Gordon. Mechanism for singlet fission in pentacene and tetracene: From single exciton to two triplets. Journal of the American Chemical Society, 133(49):19944-19952, 2011. PMID: 22084927.
[77] Paul M. Zimmerman, Zhiyong Zhang, and Charles B. Musgrave. Singlet fission in pentacene through multi-exciton quantum states. Nat Chem, 2(8):648-652, 082010.

