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Photon bunching in incoherent cathodoluminescence (CL) spectroscopy originates
from the fact that a single high-energy electron can generate multiple photons when
interacting with a material, thus revealing key properties of electron-matter excita-
tion. Contrary to previous works based on Monte Carlo modeling, here we present a
fully analytical model describing the amplitude and shape of the second-order au-
tocorrelation function (g (2)(τ)) for continuous and pulsed electron beams. Moreover,
we extend the analysis of photon bunching to ultrashort electron pulses, in which
up to 500 electrons per pulse excite the sample within a few picoseconds. We obtain
a simple equation relating the bunching strength (g (2)(0)) to the electron beam cur-
rent, emitter decay lifetime, pulse duration, in the case of pulsed electron beams, and
electron excitation efficiency (γ), defined as the probability that an electron creates at
least one interaction with the emitter. The analytical model shows good agreement
with the experimental data obtained on InGaN/GaN quantum wells using contin-
uous, ns-pulsed (using beam blanker) and ultrashort ps-pulsed (using photoemis-
sion) electron beams. We extract excitation efficiencies of 0.13 and 0.05 for 10 and
8 keV electron beams, respectively, and we observe that nonlinear effects play no com-
pelling role, even after excitation with ultrashort and dense electron cascades in the
quantum wells.
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5.1. INTRODUCTION
Photon statistics in incoherent cathodoluminescence (CL) reveals fundamental prop-
erties of the interaction of high-energy electrons (∼1-300 keV) with matter [39].
In particular, the second-order autocorrelation function (g (2)(τ)) exhibits strong
bunching (g (2)(0) À 1) when exciting a material, such as a semiconductor or in-
sulator, with an electron beam [39, 205, 228], contrary to conventional photolumi-
nescence measurements with laser excitation (typically g (2)(0) = 1) [140]. This is
because each electron initially excites bulk plasmons in the material, which end
up generating thermalized carriers that diffuse and recombine. This recombina-
tion can lead to either the emission of a photon with energy corresponding to the
bandgap of the material (bimolecular recombination), or to the excitation of an-
other emitter embedded in the material, such as a defect or quantum well, which
can then decay radiatively. Either cases can result in the emission of multiple pho-
tons per incoming electron [207] Recently, g (2)(τ) measurements have been used to
quantify the excitation efficiency of electrons in InGaN/GaN quantum wells (QWs)
with different geometries [41, 42]. The excitation efficiency is defined as the prob-
ability of an electron to interact with the emitter, in that case the QWs. Moreover,
the g (2)(τ) technique allows to extract the emitter decay dynamics without the need
of a pulsed electron beam [39]. These new insights into the use of g (2)(τ) measure-
ments in CL are key for a complete and quantitative analysis of electron microscopy
experiments.

All CL bunching experiments performed so far have been described using Monte
Carlo-based numerical models, showing good agreement with the measured g (2)(τ)
curves and the dependence of g (2)(0) on the electron current. However, Monte
Carlo models are time consuming and fail to provide a full understanding of the
bunching process and the key parameters that determine its amplitude. Moreover,
fitting the experimental data with a Monte Carlo model is complex and requires ad-
ditional computation and interpolation procedures, thus making the g (2)(τ) analy-
sis less accessible.

In addition to this, so far CL autocorrelation measurements have been limited
to the cases of continuous and ns-pulsed electron beams. Recently, ultrafast elec-
tron microscopy using fs-ps electron pulses as excitation sources, has emerged as
a powerful technique to access the dynamics of electron excitation of materials
with high temporal resolution, combined with the nanoscale electron-beam spa-
tial resolution [24, 72, 96]. Ultrafast electron microscopy has already been used
to study electron-generated carrier dynamics [79, 136] and phase transitions [229,
230], among others. Additionally, the development of techniques such as photon-
induced near-field microscopy (PINEM) has exploited the quantum nature of the
electron wave packet [87, 89], thus leading the way to the study of quantum-mechanical
aspects of electron-light-matter interactions inside an electron microscope. Auto-
correlation measurements, such as g (2)(τ), using ultrashort electron pulses can of-
fer new insights into the dynamics of excitation of a material with dense electron
pulses [231].

In this chapter, we resolve the above-mentioned limitations of current g (2)(τ)
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analyses which use Monte Carlo simulations. We develop a fully analytical model
to describe the value of g (2)(0) as a function of four experimental parameters, for
three different electron beam configurations. Our analytical model describes how
the electron current (or number of electrons per pulse), emitter lifetime, excitation
efficiency and pulse duration, in the case of pulsed electron beams, determine the
value of g (2)(0). Using our analysis, we directly extract the electron excitation ef-
ficiency γ, defined as the fraction of electrons that create at least one interaction
with the emitter [41], from one simple equation. We also show that our model re-
produces the Monte Carlo simulations developed in previous work.

In order to further test the validity of the model, we perform g (2)(τ) experiments
on InGaN/GaN quantum wells with both continuous and pulsed electron beams.
In particular, we study two types of pulsed electron beams: with relatively long (up
to 200 ns) and ultrashort (a few ps) pulse durations. In the case of ultrashort pul-
ses, we vary the number of electrons per pulse from (on average) less than 1 up to
∼ 500, thus allowing us to access regimes in which several electrons interact with
the sample within the bulk plasmon decay and carrier thermalization timescales.
Here, our analytical model shows that g (2)(0) depends only on the number of elec-
trons per pulse and the excitation efficiency. From the model it can also be derived
that in the case of a pulsed electron beam the excitation efficiency can be obtained
alternatively through a simple analysis, without the need of any fitting procedure.
Our analysis of the g (2)(τ) function shows that even for dense cascades generated
by 500 electrons per pulse (i.e., within a few picoseconds) nonlinear effects do not
have a compelling contribution in the excitation and carrier recombination of In-
GaN/GaN QWs.

5.2. EXPERIMENTAL SECTION
Cathodoluminescence experiments are performed in a scanning electron micro-
scope (SEM) equipped with a parabolic mirror that collects the emitted light. The
statistics of CL emission is analyzed using a Hanbury-Brown and Twiss (HBT) ge-
ometry [141], composed of a 50:50 beam splitter (BS) and two avalanche photo-
diodes (APDs) as single-photon counting detectors (5.1b). Experiments with vary-
ing pulse widths (6− 200ns) are performed using an electrostatic electron beam
blanker. Ultrashort pulses, with pulse widths of few picoseconds, are obtained by
focusing a fs-laser (λ= 258nm) onto the electron cathode, inducing photoemission
of electron pulses (see chapter 2). All of our experiments are performed at room
temperature.

We study a bulk semiconductor heterostructure of InGaN/GaN quantum wells,
grown by molecular beam epitaxy [41]. A schematic of the structure is shown in the
inset of Fig. 5.1a. The sample consists of 10 2-nm-thick InGaN layers, separated
with 15-nm GaN layers. A 2-nm AlGaN barrier layer is grown on top of the quan-
tum well stack, and the whole structure is buried below a 250-nm-thick p-type GaN
layer. The substrate is composed of n-type GaN. The inset also shows the results
of Monte Carlo simulations of the trajectory of a 10 keV electron beam inside the
sample, performed using the Casino software [1]. Each dot in the plot represents a
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Figure 5.1: (a) Cathodoluminescence (CL) spectrum of InGaN/GaN quantum wells (QWs) obtained with
a continuous 10 keV beam (242 pA). Inset: schematic of the InGaN/GaN heterostructure overlaid with
the results from Monte Carlo simulations of the electron trajectory inside the sample, perfomed using
the Casino software [1]. Each curve indicates the trajectory of one electron, and the color bar indicates
the energy of the electron at each position. (b) Schematic of the CL collection and analysis using a
Hanbury-Brown and Twiss (HBT) experiment. (c) Schematic of the expected histograms obtained using
the HBT experiments using continuous (left) and pulsed (right) electron beams.

collision of the primary electron with the sample, which can lead to the excitation
of one or more bulk plasmons. The color of the dot indicates the energy of the pri-
mary electron beam at that point. The results show that only a small fraction of the
electrons will directly reach the QWs, as previously shown using g (2)(τ) measure-
ments [41]. Moreover, the AlGaN layer acts as a carrier blocking layer [232], hence
only carriers generated below this layer can excite the QWs.

Figure 5.1a shows a typical CL spectrum obtained when exciting the sample
with 10 keV electrons. The emission originates mostly from the QWs, correspond-
ing to the InGaN band edge emission peak around 450 nm. Defect luminescence
from the yellow band [163, 233], in the 520-650 spectral range, is barely visible in the
spectrum, given that the intensity in this range is 30 times lower than the QW emis-
sion. This is in accordance with previous CL measurements on this sample [41],
and is attributed to the fact that 10 keV electrons do not reach the GaN substrate,
thus limiting the excitation of carriers in the bulk GaN. In the HBT experiments we
use a bandpass filter (450± 40nm) to ensure that only the CL emission from the
QWs is recorded.
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A typical g (2)(τ) experiment consists of the acquisition of a histogram (H(τ)) of the
number of coincidence events (i.e., a correlation) as a function of the delay between
two recorded photons (τ). A schematic of the recorded histogram obtained after
excitation with a continuous electron beam is shown in Fig. 5.1c (left). In this case,
the g (2)(τ)) curve is obtained by normalizing the histogram with respect to the value
at very long delay (τ→∞), hc

uncorr, which represents the amplitude for uncorrelated
events. Hence,

g (2)(0) = H(0)

H(τ→∞)
= 1+ hc

b

hc
uncorr

, (5.1)

where hc
b is the amplitude of the bunching peak, as depicted in Fig. 5.1c. g (2)(0) can

be interpreted as the likelihood of having two photons with delay τ = 0 compared
to any other delay. In the case of Poissonian statistics, such as for coherent light,
g (2)(τ) = 1 for any delay [140], while g (2)(0) < 1 indicates sub-Poissonian statistics
(antibunching), as in the case of a single-photon emitter [234, 235], and g (2)(0) >
1 represents super-Poissonian statistics (bunching). Some examples of processes
in which bunching occurs are blackbody radiation [236, 237] and superradiance
[238, 239], as well as the CL emission presented here. From a statistical point of
view, hb is related to the total number of correlations (defined as the detection of
two photons) leading to bunching, that is, coming from the same electron, while
hc

uncorr represents the uncorrelated events, that is, correlations between photons
that are generated by different electrons.

The temporal decay of the bunching peak is determined by the radiative de-
cay of the emitter and enables determination of the emitter lifetime, as will be ex-
plained below. The area of the bunching peak, related to the height as Ac

b = αbhc
b ,

is proportional to the average number of possible combinations between pairs of
photons that lead to bunching, that is, that come from the same electron. Here we
have definedαb as the shape factor of the bunching peak. Similarly, the area Ac

uncorr
is related to the mean number of possible combinations of photon correlations
from different electrons, that is, uncorrelated events, during the acquisition time of
the experiment T = B tB . Here B is the total number of bins in the experiment and
tB is the time of each bin. From this it follows that Auncorr = hc

uncorr(2B+1)tB /2. The
factor 2B+1 comes from the fact that the g (2)(τ) histogram is theoretically built over
positive and negative times, in a symmetric fashion. The additional factor 2 in the
denominator accounts for the fact that the number of possible events decreases for
increasing delay following a triangular function (see section 5.7.2 in the Supporting
Information). Taking these definitions into account, Eq. 5.1 becomes

g (2)
cont(0) = 1+ Ac

b

Ac
uncorr

(2B +1)tB

2αb
. (5.2)

The model is constructed following the subsequent steps that start with an elec-
tron entering the material, until a photon is emitted, similar to the previous Monte
Carlo model [39, 41]. The steps are as follows:
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1. Excitation of bi bulk plasmons in GaN close to the QWs, described by a Pois-
son distribution with expected value b. It should be noted that the number of
plasmons generated per electron will probably be larger than bi , but here we
only consider those that can create carriers which can excite the QWs, that is,
excited within the carrier diffusion length.

2. Decay of each bulk plasmon into mi thermalized carriers, again described by
a Poisson distribution with expected value m.

3. Diffusion of carriers, which can either:

(a) excite a QW, which emits a photon. The joint probability of these two
steps is accounted in the parameter η.

(b) not excite a QW or excite a QW which then decays non-radiatively.

This step is assumed to follow a binomial distribution, with mi representing
the number of events and η probability that an event results in the emission
of a photon.

We should note that here we refer to the process of QW excitation, but the model
can be applied to any other kind of emitter, or simply to carrier recombination. In
the case of a thin sample and high electron energy, such as in transmission electron
microscopy (TEM) experiments, the average number of bulk plasmons (b) defined
in step 1 corresponds to the ratio between the thickness and the electron mean free
path [13, 39]. In the case of thicker samples, b takes into account the probability
that carriers, and, in particular, minority carriers, created after electron excitation
actually reach the emitter. It therefore depends on the sample geometry and diffu-
sion length of minority carriers, as will be seen further in the text.

A key aspect of our g (2)(0) model is that it accounts for the combined stochastic
nature of all the involved processes. The model is therefore based on the calcu-
lation of the average possible combinations of pair-correlation events that lead to
bunching (Ac

b) and to uncorrelated events (Ac
uncorr). A full derivation of the model

is provided in the Supporting Information (section 5.7.2). In brief, from step 2 and
3 we obtain that the average number of possible combinations of pair-correlation
events created after the excitation of bi bulk plasmons is given by b2

i m2η2. We then
need to find the average number of combinations of correlations between pairs of
photons from the same electron (i.e., ignoring pair-correlation events created by
photons from different electrons), taking into account that bi follows a Poisson dis-
tribution. Given n electrons arriving at the sample during the time of the experi-
ment T , the average number of combinations of pair-correlation events leading to
bunching becomes

Ac
b = nb(b +1)m2η2 . (5.3)

Similarly, it can be shown that the expected value of the number of combinations
of pair-correlation events leading to uncorrelated events, that is, pairs of photons
coming from different electrons, is (see 5.7.2)

Ac
uncorr = n(n −1)b2m2η2 . (5.4)
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We now insert Eqs. 5.3 and 5.4 into Eq. 5.2, and rewrite n as a function of the
electron current, I = nq/(B tb), where q is the electron charge. We also consider the
limit B À 1, which is reasonable given that the acquisition time is typically minutes
or more, while the time resolution is usually less than 1 ns. We then obtain the
following expression for the amplitude of g (2)(τ) at 0 delay:

g (2)
cont(0) = 1+ q

Iαb

b +1

b
. (5.5)

Several aspects are noticeable from Eq. 5.5. First of all, we can see that the value of
g (2)(0) is inversely proportional to the electron beam current, which is in agreement
with previous experimental results [39, 41, 228]. This can now be understood from
the fact that the amplitude of the bunching peak scales linearly with the number of
electrons reaching the sample (Eq. 5.3), as it depends on the number of correlations
between photons from the same electron. Instead, the background scales quadrat-
ically (Eq. 5.4), since it depends on the events created by photons from different
electrons.

Second, Eq. 5.5 shows that g (2)(0) does not depend on the number of carriers
generated per bulk plasmon m, nor on the efficiency of these carriers to excite a
QW or the quantum efficiency of the QW (both processes included with η). The
only relevant parameter is the number of bulk plasmons created close to the QWs
(b). This is in agreement with the fact that g (2)(τ) measurements are independent
of the absolute intensity incident on the detectors, as long as the statistics of the
emission process is preserved [140]. Notice that even in the case b = 1, that is on
average one bulk plasmon per electron interacts with the QWs, g (2)(0) > 1 due to the
stochastic nature of the plasmon excitation process. It follows from Eq. 5.5 that the
bunching contribution to g (2)(0) increases with decreasing b, given that decreasing
the number of interacting plasmons generated per electron would have a similar
effect as decreasing the current. Given the Poissonian nature of the bi parameter,
the average number of interacting bulk plasmons b is related to the probability of
creating at least one interaction (bulk plasmon) close to the emitter [41], defined as

γ= 1−Poiss(0;b) = 1−e−b , (5.6)

where γ can be interpreted as the excitation efficiency of the electron in the given
material geometry. Finally, the value of g (2)(0) also depends on the shape of the
bunching curve (hb(τ)), which is represented by the dependence on αb . Given an
emitter decay yemitter(t ), it can be shown that the number of correlations between
photons emitted with a delay τ is proportional to (see 5.7.4)

hb =
∫ ∞

0
yemitter(t )yemitter(t +τ)d t . (5.7)

In the case that the emitter decays as a simple exponential with lifetime τemitter,
hb(τ) is an exponential with τemitter, and thus the decay of the g (2)(τ) curve directly
gives the emitter decay. In this case, the relation between the area and the height of
the bunching peak is: αb = 2τemitter (see 5.7.2). In the case of more complex decay
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Figure 5.2: g (2)(τ) measurements with a continuous electron beam. (a) g (2)(τ) experiments obtained for
different electron currents, with an electron energy of 10 keV. The points represent the data and the solid
lines the fit. (b) Fits of g (2)(0)−1 vs electron current obtained from the curves in (a). The black solid line
is the fit obtained using Eq. 5.5, from which a value of γ= 0.13 is obtained. The error bars represent the
uncertainty in the measured value of the electron current (horizontal) and fit errors (vertical).

mechanisms, we should apply Eq. 5.7 to extract the emission dynamics from the
g (2)(τ) measurement. Eqs. 5.5 and 5.7 can now be directly used to fit experimental
data of g (2)(τ) versus beam current, to determine b, and hence γ, thus providing
essential information on the electron beam excitation efficiency in incoherent CL
excitation.

Figure 5.2a shows a selection of g (2)(τ) measurements of the QW sample at dif-
ferent electron currents, all obtained using a continuous 10 keV electron beam. The
time binning in all measurements is set to tb = 512ps. At the lowest current (2.8 pA),
g (2)(0) = 12.6 is obtained, while the value of g (2)(0) strongly decreases for increas-
ing current. The curves cannot be properly fitted with a simple exponential decay,
probably due to multiple decay processes taking place simultaneously. Instead, the
emitter decay (yemitter(t )) can be described with a stretched exponential, given by

yemitter(t ) = y0e
− t
τemitter

βemitter
, (5.8)
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with parameters τemitter representing the average emitter lifetime and βemitter the
deviation from a pure exponential decay [240]. This is further confirmed by direct
measurements of the decay statistics of the QWs (see 5.7.4). In this case, the shape
of g (2)(τ) does not give directly the emitter decay properties, but we need to fit the
data with Eq. 5.7, which can be solved numerically. The solid lines in the figures
correspond to the fits, from which we obtain an emitter lifetime of τemitter = 10.65±
0.32ns and βemitter = 0.76±0.01.

In order to compare the experimental results with the analytical model, Fig.
5.2b shows the value of g (2)(0)−1, obtained from the fits of each curve, as a function
of electron current. The horizontal error bars indicate the uncertainty in measuring
the electron current, while the vertical errors are derived from the fitting procedure.
We observe that the value of g (2)(0)−1 exhibits a linear decrease (on a log-log plot)
with slope−1, as predicted by Eq. 5.5. The shape factorαb is calculated numerically
from the solution of Eq. 5.7 using the derived values of τemitter and βemitter, thus be-
coming αb = 25.04. Therefore, we can extract b from Eq. 5.5. We obtain the best fit
for b = 0.13, which yields an excitation efficiency of γ = 0.13±0.01, meaning that
on average, only 13 out of 100 electrons actually interact with the QWs. This low in-
teraction between the electrons and the QWs is attributed to the fact that at 10 keV
most electrons lose their energy before arriving to the QWs, as shown in Figure 5.1a
and discussed in ref. [41]. Moreover, the carriers generated on the top GaN layer
cannot reach the QWs, due to the presence of the AlGaN blocking layer on top of
the QWs. For reference, we also show in the Supporting Information (section 5.7.1)
that the results from the model are in excellent agreement with those obtained with
the Monte Carlo-based approach proposed in previous works [39, 41], confirming
that our model serves as an effective analytical version of the Monte Carlo one.

5.4. PULSED ELECTRON BEAM

g (2)(τ) experiments can also be performed using pulsed electron beams, which can
offer advantages such as lower acquisition times and simpler analysis, as will be dis-
cussed below. In this configuration, the photon emission dynamics is shaped by the
temporal spread of electrons, and thus a modified model needs to be developed. A
schematic of the histogram obtained in an HBT experiment in pulsed conditions is
shown in Figure 5.1c (right). In contrast to the continuous case, here the histogram
is composed of a peak at τ = 0, containing correlations between photons from the
same electron pulse, and peaks at delays corresponding to the time between pulses
(τi = i /F , with i being an integer number and F the repetition rate). The latter cor-
respond to correlations between photons from consecutive pulses (i = ±1), from
every second pulse (i =±2) and so on. These peaks are thus analogous to the back-
ground (Ac

uncorr) in the continuous case.

The derivation of the model for the pulsed case is similar to the one for the
continuous one, with the main difference being the shape factor of the bunching
(τ0) and uncorrelated (τi , i 6= 0) peaks. Given that the peaks at τi (i 6= 0) contain
correlations between photons from different pulses, their shape is determined by
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both the electron pulse and emitter decay, as explained in the Supporting Informa-
tion (5.7.4). The ratio between the area (Ap

uncorr,i) and the height (huncorr,i) of any of

these peaks is given by Ap
uncorr,i = αconvhuncorr,i. αconv is thus a shape factor, which

will depend on the particular shape of the electron pulse and emitter decay.

The peak centered at τ = 0, accounts for correlations between photons from
the same pulse, and has two components (Ap

0 = Ap
uncorr,0 + Ap

b ). The first compo-
nent corresponds to correlations between photons from the same pulse, but differ-
ent electrons, and therefore has a shape factor αconv. The second component cor-
responds to correlations between photons from the same electron, which is what
constitutes the bunching. Similar to the continuous case, we can consider that all
the excitations take place instantaneously, given that the time scale of bulk plas-
mon decay and carrier diffusion (typically in the fs/ps regime) [207] is much smaller
than the emitter lifetime (hundreds of ps or ns). Therefore, the shape of the electron
pulse does not play a role in this component, contrary to the case of the uncorre-
lated component. The time between photons is only determined by the emitter
lifetime, and Ap

b =αbhp
b , where hp

b is the height of this peak.

Taking into account the shape factors, and calculating the average number of
possible combinations of pair-correlations events for bunching (Ap

b ) and uncorre-

lated (Ap
uncorr,i) events in an analogous way as in the continuous case (see section

5.7.3 for a full derivation), we obtain that for pulsed excitation

g (2)
pulsed(0) = 1+ αconv

αb

b +1

ne b
. (5.9)

We observe that the expression for g (2)(0) for a pulsed beam is very similar to
the one for the continuous case (Eq. 5.5). Here, g (2)(0) is inversely proportional to
the number of electrons per pulse, which is related to the electron beam current
through ne = I

qF , with F being the repetition rate. The dependence of g (2)(0) on
the average number of bulk plasmons that interact with the sample (b) is exactly
the same as for a continuous electron beam, showing that the pulsed g (2)(τ) mea-
surement fundamentally probes the interaction of electrons with the sample in the
same way. The main difference between the continuous and pulsed case is the fac-
tor αconv: in the pulsed case the g (2)(0) depends also on the shape of the electron
pulse. From the derivation of g (2)(0) (section 5.7.3) it also follows that now we can
simply divide the area of the peak at τ = 0 by the area of any other peak at τ 6= 0 to
obtain the excitation efficiency:

Ap
b + Ap

uncorr,0

Ap
uncorr,i

= 1+ b +1

ne b
= 1+ 1− log(1−γ)

ne log(1−γ)
. (5.10)

In this case we do not need any fitting procedure nor prior knowledge of electron
pulse shape or emitter decay, thus making the analysis even simpler. This becomes
particularly useful when having small signal-to-noise ratios or nontrivial emitter
decays or electron pulse shapes, in which cases fitting becomes challenging.

In order to test the model for the pulsed case, we performed experiments using
an ultrafast beam blanker, in which a set of electrostatic plates is inserted inside the
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electron column. One of the plates is driven using a pulse generator, which is set
to send a square signal with peak-to-peak voltage of 5 V and offset 2.5 V, while the
other plate is grounded. This configuration allows us to obtain effectively square
electron pulses with pulse width (∆p) determined by the repetition rate F and duty
cycle D . A characterization of the electron pulses is shown in the Supporting In-
formation (5.7.6). In our experiments we kept the duty cycle fixed at D = 95% and
varied the repetition rate from 0.2 to 6 MHz, resulting in pulse widths ranging from
200 down to 6 ns. Notice that an even smaller pulse width, down to 30 ps, can be
obtained using the same ultrafast blanker in a different configuration [49], but long
pulse widths were chosen to show the effect on the amplitude and shape of the
bunching peak. The current in continuous mode (that is, without blanking) was
kept constant (I = 214pA) for all experiments, therefore changing the repetition
rate results in a varying number of electrons per pulse, that is,

ne = I

q

1−D/100

F
= I

q
∆p (5.11)

Figure 5.3a shows a selection of g (2)(τ) curves centered around the peak at zero
delay. The experiments were performed using an electron energy of 8 keV instead
of 10 keV as in the measurements using a continuous electron beam. This choice of
lower electron energy allows us to achieve relatively high g (2)(0) amplitudes despite
having a high current on the sample (214 pA), due to the blanking conditions. The
solid lines in Fig. 5.3 are the fits of the data, which correspond to the sum of the
solution from Eq. 5.7 (assuming a decay following a stretched exponential), and a
convolution between a triangular curve and the same solution from Eq. 5.7. The
triangular function comes from the convolution between two square pulses with
pulse width (∆p), representing two electron pulses (see 5.7.4). The best fit of the
curves is found for τemitter = 5.40± 0.33ns and βemitter0.56± 0.01. The difference
between these values and the ones found in the continuous experiment (10.7 ns
and 0.67, respectively) is attributed to the inhomogeneity of the sample, which re-
sults in emission lifetimes that depend on sample position (see Supporting Infor-
mation, 5.7.8). The discrepancy could also come from the fact that at 10 keV we
might be probing deeper QWs, which can exhibit different lifetimes. The curve at
the lowest number of electrons per pulse (8 e−/pulse) exhibits the highest ampli-
tude (g (2)(0) = 4.1). In this case, the pulse width (6 ns) is comparable to the emitter
lifetime, and thus no clear distinction between the bunching (Ap

b ) and uncorre-

lated (Ap
uncorr,0) curves can be observed. Instead, the g (2)(τ) curve for long pulses

show a small sharp peak, corresponding to the bunching peak, on top of a broader
background, as can be observed in the curve corresponding to ∆p = 500ns (637
electrons per pulse). The full shape of the uncorrelated peak can be observed in the
right inset of Figure 5.3a, showing the peak around delay 0 and the first consecutive
peak (τ1 = 1/F ).

The value of g (2)(0)− 1 as a function of the number of electrons per pulse is
shown in Figure 5.3b, which has been derived from the fits in Fig. 5.3a. We observe
that the bunching decreases with increasing number of electrons per pulse, as ex-
pected, but, contrary to what we observed in the continuous case, the data does
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Figure 5.3: g (2)(τ) measurements with a ns-pulsed electron beam. (a) g (2)(τ) experiments obtained by
changing the electron pulse width ∆p, which leads to a change in the number of electrons per pulse. In
this case the electron energy is 8 keV. The points represent the data and the solid lines the fit. Insets:
(left) schematic of the beam blanking configuration, (right) example of a g (2)(τ) measurement shown for
a wider delay time range, thus showing the full peak at τ= 0 and the consecutive peak at τ= 1/F , where
F is the repetition rate. (b) Experimental results of g (2)(0)−1 vs number of electrons per pulse, obtained
from the fits of the curves in (a). The black solid line corresponds to the best fit obtained using Eq. 5.10,
which yields an excitation efficiency of γ= 0.05. The error bars are derived from the uncertainty in the
current measurement (horizontal) and fitting procedure (vertical).
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not exhibit a linear trend (on the log-log plot). This is due to the fact that in this
comparison we are changing αconv in each measurement. For a fixed beam cur-
rent, large pulse widths correspond to a higher number of electrons per pulse. So,
while we expect decreasing value of g (2)(0) with electrons per pulse, the factorαconv

also becomes larger, thus effectively increasing g (2)(0). The model, which accounts
for this effect, shows a good agreement with the data. We can therefore extract an
excitation efficiency of γ = 0.05. The fact that a lower γ is found here compared
to the continuous case is fully consistent with the fact that the pulsed experiments
were performed with an electron energy of 8 keV instead of 10 keV. At this lower
electron energy, most bulk plasmons are generated in the top GaN layer, resulting
in fewer excitations close to the quantum wells. The spectrum of the QWs and the
Monte Carlo simulations of the electron beam trajectory at 8 keV is provided in the
Supporting Information (section 5.7.7). Additionally, we can derive the excitation
efficiency using Eq. 5.10 by simply dividing the area of the bunching peak by the
area of any other peak, from which we obtain γ= 0.06, which is in good agreement
with the value found using the fitting procedure.

5.5. ULTRASHORT PULSES

An extreme case of the model for pulsed g (2)(τ) measurements is when we have
ultrashort electron pulses, that is, in the picosecond regime. In this case, the elec-
tron pulse width is very small compared to the emitter lifetime, and thus the factor
accounting for the convolution of both becomes αconv = αb . Then, Eq. 5.9 can be
further simplified to

g (2)
ultrashort(0) = 1+ b +1

ne b
= Ap

0

Ap
uncorr,i

, (5.12)

where the only remaining parameters are the number of interacting bulk plasmons
per electron, which can be also described in terms of excitation efficiency (γ), and
the average number of electrons per pulse ne . In this case the shape of the bunching
peak, and thus, the emitter lifetime, do not contribute to the amplitude of g (2)(0).
Moreover, g (2)(0) now can be directly obtained from the ratio between the areas
of the different peaks, similar to Eq. 5.10. Hence, when analyzing an experiment,
we can simply sum all the counts from each of these two peaks (at τ = 0 and τi =
i /F, i = ±1,±2, . . . ) and divide them to directly obtain the value of g (2)(0). In this
way, the analysis to retrieve the excitation efficiency from g (2)(τ) measurements
becomes even simpler. We should also notice that ultrashort pulses are typically
achieved by changing the emission statistics of the electron. For example, in the
case of photoemission of electron pulses, as in the experiments shown below, the
emission of pulses is determined by laser excitation of the electron cathode, instead
of conventional thermionic or Schottky emission. Our derivation of g (2)(0) is gen-
eral and does not assume any particular emission statistics for the electron beam.
In the Supporting Information (section 5.7.3) we show a complementary derivation
for electron pulses obtained with photoemission.
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Figure 5.4: g (2)(τ) measurements with ultrashort (ps) electron pulses. (a) g (2)(τ) experiments obtained
by changing number of electrons per pulse, with electron energy of 10 keV. The experimental data is
represented by points, while the solid lines are the fits obtained by solving Eq. 5.7 (with yemitter(τ)
being a stretched exponential). Insets: (left) schematic of the photoemission setup, (right) zoom-out of
a g (2)(τ) measurement, showing that the shape of the uncorrelated peaks (in this case, τ= 1/F = 200ns)
is now determined only by the emitter decay. (b) g (2)(0)−1 vs number of electrons per pulse, obtained
by dividing the area of the bunching peak by the area of any other peak, as discussed in Eq. 5.12. The
black solid line corresponds to the best fit obtained using Eq. 5.12, which yields an excitation efficiency
of γ= 0.13.
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Figure 5.4a shows a selection of g (2)(τ) measurements performed using ultra-
short pulses (∼ 1ps), obtained by focusing a fs laser into the electron cathode at a
repetition rate of 5.04 MHz [72] (see chapter 2). We chose the conditions for which
a larger number of electrons per pulse can be achieved (up to 490 in this case) at
the expense of spatial resolution [49] (chapter 2). This regime allows us to reach
the highest possible electron cascade density, as will be discussed below. The ex-
periments were performed with an electron energy of 10 keV. The figure shows the
0-delay peak for a changing number of electrons per pulse. We observe that with
an average of 1 electron per pulse we obtain g (2)(0) = 7.25. The right inset in Fig-
ure 5.4a shows a measurement including also the first uncorrelated peak, centered
at τ = 198ns. We observe that now both the peaks at τ = 0 and at τ = 1/F have
the same shape, determined by the emitter decay. The solid lines again represent
the curves obtained by fitting with Eq. 5.7, given that the emitter decay follows a
stretched exponential. The best fit is obtained for τemitter = 5.84± 0.07ns ns and
βemitter = 0.751± 0.004. Figure 5.4b shows the value of g (2)(0)− 1 as a function of
the number of electrons per pulse, together with the fit using Eq. 5.12. Here, the
data points have been obtained by simply dividing the areas of the bunching peak
by the height of peaks at τi = i /F . The horizontal error bars represent the uncer-
tainty in current measurement in pulsed, partially due to instability in the power
of the laser that excites the tip. The vertical error bars are obtained from the analy-
sis of areas below the peaks. We also correct for the fact that the number of events
decreases at long delays due to an experimental artifact (see 5.7.5). We observe
that the data follows the trend predicted by Eq. 5.12, yielding the best fit for the
model for γ = 0.130± 0.001, which is in agreement with the excitation efficiency
found in the experiments in continuous mode, in which the same electron energy
was used. This confirms the feasibility of using the g (2)(τ) analysis with ultrashort
electron pulses to obtain the excitation efficiency, thus enabling many applications
of g (2)(τ) spectroscopy in ultrafast electron microscopy.

Even though the data show a linear trend as in the continuous case, we should
note that the electron excitation is very different between the continuous and pulsed
cases. In ultrafast pulsed mode, we are exciting the sample with a large number of
electrons within a very short time (ps), while in the continuous or beam-blanked
cases the average time between two consecutive electrons was never smaller than
hundreds of ps (600 ps at 260 pA). We expect that bulk plasmons decay within the
first tens of fs after electron excitation, initially creating hot carriers. The thermal-
ization of these carriers typically occurs within tens of ps [207]. Therefore, in the
ps-pulsed g (2)(τ) experiment up to 490 electrons in each pulse excite the sample
within the carrier thermalization time, and in a relatively small area. This raises the
question whether we are inducing any nonlinear interaction between carriers due,
such as Auger recombination, to high carrier concentrations.

Previous work on InGaN/GaN quantum wells under optical excitation showed
that a high excitation fluence leads to a decrease in efficiency, typically referred to
as "efficiency droop" [241]. Even though the origin of this effect is still under dis-
cussion, some works attributed this efficiency droop to Auger recombination due to
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Figure 5.5: (a) Spectra of the QWs obtained when exciting with ultrashort electron pulses, containing
from 1.4 (orange) up to 120 (black) electrons per pulse on average (10 keV). Inset: integrated signal of
the QW emission as a function of the number of electrons per pulse. The dashed line corresponds to a
linear fit. (b) 2D map of the estimated maximum carrier density in the sample obtained after excitation
of 490 electrons with an energy of 10 keV.

locally-induced high carrier densities [241]. Nevertheless, the trend of g (2)(0) with
the number of electrons per pulse exhibits a clear power law, as expected from the
g (2)(τ) model, which neglects nonlinear effects. These results suggest that nonlin-
ear interactions between carriers do not play a significant role in this case, even at
the highest number of electrons per pulse. This further suggests that the induced
carrier densities are lower than the threshold for Auger recombination to occur.

To further elucidate this absence of nonlinear effects, Figure 5.5a shows CL
spectra of the QWs obtained at different number of electrons per pulse. The in-
tegrated area below the curve (in the 410-490 nm spectral range) as a function of
the number of electrons per pulse is plotted in the inset of Figure 5a. We observe a
clear linear trend with increasing number of electrons per pulse. Figure 5.5b shows
the calculated maximum carrier density for a 10 keV electron beam containing 490
electrons. Here we have assumed a radius of the electron beam of 200 nm, corre-
sponding to the expected spatial resolution obtained under our pulsed conditions,
calculated using the Fourier transform method explained in ref. [49]. We use the
Casino software [1] to estimate the number of inelastic collisions of the electron
with the sample. We assume that each collision corresponds to the generation of
a bulk plasmon and generates 3 electron/hole pairs [28, 242]. We observe that the
highest carrier density is in the order of 6×1017 cm−3. Previous works based on op-
tical excitation of InGaN show that Auger processes only become dominant for car-
rier densities larger than 1×1018 cm−3 [243, 244]. Therefore, the electron-induced
carrier density is below that which would create nonlinear effects. Moreover, we
expect the initial spatial distribution of carriers to be relatively localized in space
after electron excitation, implying that diffusion of carriers plays a larger role than
in optical experiments, in which the spot size is typically larger, as it is limited by
diffraction. We note that this is the largest number of electrons per pulse that we
can obtain in our system at 10 keV. Other pulsed conditions lead to better spatial
resolution and hence more confined electron cascades, but at much lower num-
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ber of electrons per pulse (less than tens of electrons per pulse) (chapter 2). Other
works have shown a spatial resolution in the nm range, but in the regime of few
electrons per pulse, and thus small electron density [79, 90].

5.6. CONCLUSIONS

In conclusion, we have presented a full description of g (2)(τ) autocorrelation mea-
surements in incoherent cathodoluminescence spectroscopy for different electron
beam configurations. We have developed a fully analytical model to explain the
amplitude of bunching (g (2)(0)) as a function of electron beam current (or num-
ber of electrons per pulse), electron excitation efficiency, emitter lifetime and pulse
duration, in the case of pulsed electron beams. The model highlights the inverse
dependence of the bunching contribution to g (2)(τ) as a function of electron beam
current or number of electrons per pulse. Moreover, by acquiring a g (2)(τ) curve at
a known electron beam current we can directly extract the electron excitation effi-
ciency by using a simple equation, and the curve can be fitted to obtain the emitter
lifetime. This is a major step forward compared to the previous method in which
Monte Carlo simulations were needed, given the simplicity of the analysis using our
model.

In particular, we show that for a pulsed electron beam, the excitation efficiency
can be obtained by simply dividing the areas of the peak at 0 delay by that of any
other peak, without the need of fitting the data. The model is generic and indepen-
dent of the sample under study and prior knowledge of the sample geometry. In
order to test the model with experiments, we have studied InGaN/GaN quantum
well samples, in which we find an excitation efficiency of 0.13 for 10 keV electrons
and 0.05 in the case of 8 keV electrons. Furthermore, we have presented 10 keV
CL measurement using ultrashort (ps) electron pulses, with the average number of
electrons ranging from less than 1 to ∼ 500. The measurements of g (2)(0) as a func-
tion of the number of electrons per pulse exhibit the same trend as predicted by the
analytical model, suggesting that nonlinear carrier interactions do not play a role,
even at a high number of electrons per pulse. We model the induced carrier den-
sity in the QW sample and show that it remains lower than typical values for which
nonlinear effects in optical excitation are observed. We foresee that the analytical
model will make g (2)(τ) measurements and analysis more accessible, thus allowing
to get deeper insights into the fundamentals of electron-matter interaction. More-
over, the g (2)(τ) experiments with ultrashort pulses pave the way to study photon
statistics with dense electron cascades in a wide range of materials.

5.7. SUPPORTING INFORMATION

5.7.1. COMPARISON TO MONTE CARLO SIMULATIONS

Previous g (2)(τ) measurements in cathodoluminescence (CL) have been modeled
using Monte Carlo (MC) simulations. Here we demonstrate the accuracy of our
analytical model by comparing g (2)(0) results obtained with our analytical model
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to those produced by MC simulations. The comparison is performed for the three
different electron beam configurations (continuous, pulsed with beam blanker and
pulsed through photoemission). In all cases, the following steps were considered
after the arrival of an electron to the sample:

1. Creation of bi bulk plasmons, according to a Poisson distribution with expec-
tation value b.

2. Decay of each plasmon into mi electron-hole pairs, described with a Poisson
distribution with expectation value m.

3. Excitation of a quantum well by an electron-hole pair with probability η.

4. Emission of a photon, following a given decay mechanism.

The MC simulations with a continuous electron beam have been performed
using the same code as in refs. [39, 41, 42]. The code was adapted to represent
the blanker experiment, in which only part of the initial continuous beam reaches
the sample, thus generating (relatively long) electron pulses. In the MC simulations
for the blanker case the current in continuous mode and the repetition rate were
set to 20 pA and 1 MHz, respectively, and the pulse width was varied from 8 up to
500 ns, similar to the experiments. We also adapted the initial MC code to simulate
electron pulses generated by photoemission. In this case, no continuous electron
beam is initially generated, but instead we directly create pulses containing a cer-
tain number of electrons per pulse, given by a Poisson distribution with expectation
value ne . The pulse width is assumed to be Gaussian, withσ= 1ps. The exact value
of the pulse width is not critical, given that it is much shorter than the emitter life-
time τemitter. The MC simulations with photoemission were performed assuming a
repetition rate of F = 5.04MHz. In all cases, the results from the simulations have
been analyzed using the same procedure as for the experimental data.

Figure 5.6 shows the values of g (2)(0)−1 obtained from the MC simulations us-
ing a continuous electron beam (a), and a pulsed electron beam generated by beam
blanking (b) and photoemission (c). In the three cases we show g (2)(0)−1 as a func-
tion of electron beam current (a) and number of electrons per pulse (b, c). In all
cases we consider an exponential decay for the emitter, with lifetime τemitter = 12ns
and an average number of b = 0.2 bulk plasmons per electron that interact with the
quantum wells, corresponding to an excitation efficiency of γ = 0.18. We also as-
sume m = 1 and η = 1, even though it has already been shown that these param-
eters do not play a role in the final result of the MC simulation [41]. In this work
we explain this fact by showing that m and η cancel out in the development of the
analytical model. The time step in the simulations was set to 512 ps, the same as in
our experiments.

Figure 5.6 also shows the results of our analytical model, in which we used the
same parameters as in the MC simulations. We should note that here no fitting is
needed, given that we just fix all the parameters (including b). The results show a
very good agreement between the MC simulations and the analytical model.
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Figure 5.6: Monte Carlo simulations of g (2)(0) amplitude vs. electron beam current or number of elec-
trons per pulse, together with the results from the analytical model. (a) Continuous electron beam, (b)
electron beam pulsed using the beam blanking technique and (c) pulsed electron beam generated by
photoemission.

5.7.2. ANALYTICAL MODEL - CONTINUOUS ELECTRON BEAM

A g (2)(τ) experiment measures the photon statistics of a given emitter or source,
and it is therefore based on random processes: the emission of a photon is stochas-
tic, following a certain probability distribution (for example, an exponential decay).
Moreover, in typical experimental setups (such as the HBT experiment), the emit-
ted photons are split randomly towards the two detectors, with a 50 % probability
of being detected by each detector [140]. The measurement is based on collect-
ing enough statistics such that it can accurately represent the chances of having a
correlation at a given delay compared to any other. It is therefore not possible to
predict exactly how many photons will correlate with photons from the same elec-
tron (thus leading to bunching), and how many with photons from other electrons
(uncorrelated events). Instead, we can calculate how likely it is that one scenario
happens with respect to the other one. Hence, our analytical model is based on cal-
culating the average number of combinations of correlations that lead to bunch-
ing (Ab) compared to the average number of combinations that lead to uncorre-
lated events (photons coming from different electrons, or pulses, in the pulsed case,
Auncorr).

We start from Eq. 5.2 of the main text, in which:

g (2)
cont(0) = 1+ Ac

b

Ac
uncorr

(2B +1)tB

2αb
, (5.13)

where Ac
b contains the mean number of combinations of correlations between pho-

tons from the same electron (i.e., giving bunching), Ac
uncorr is the mean number of

combinations of correlations between photons from different electrons (uncorre-
lated), B is the total number of bins during the acquisition time T , tB is the bin size
and αb is the shape factor of the bunching peak, defined as the ratio between the
area and height of the peak. Hence, we now need to calculate Ac

b and Ac
uncorr.
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CORRELATIONS BETWEEN PHOTONS FROM THE SAME ELECTRON (Ac
b , BUNCHING PEAK)

We consider that when one electron interacts with an emitter (semiconductor, quan-
tum wells, atomic defect, etc), a certain number of photons k will be emitted, each
of them with a certain arrival time tk . We should note that this value k is not fixed,
but will be different for each electron, given the stochastic nature of all the pro-
cesses (creation of bulk plasmon, decay into electron-hole pairs, radiative decay of
emitter). We want to count the number of combinations of pair-correlation events
between photons from the same electron. We define one correlation as the detec-
tion of a pair of photons, thus we need to take subsets of 2 from k photons, each
photon with a fixed arrival time. Moreover, the order matters, given that this will
determine whether the measured delay between photons is positive or negative,
and there are no repetitions, i.e., a photon cannot correlate with itself. This is a
common problem in combinatorics [245], sometimes referred to as variation with-
out repetition, from which we extract that the number of possible combinations
is

Ak =
(

k

2

)
= k(k −1) . (5.14)

Next, we want to relate Ak to physical variables, i.e., expected value of number
of bulk plasmons per electron (b), expected value of number electron-hole pairs
created per plasmon (m) and radiative decay efficiency (η). We will follow steps 1-3
described in the main text (section 5.3), starting from step 3 and building up.

3 Given mi electron-hole pairs, each of them with a probability η of exciting a
QW that emits a photon, the expected value of the number of possible com-
binations of correlations of photons becomes

A3 =
mi∑

k=0
Ak Bin(k;mi ,η) =

=
mi∑

k=0
k(k −1)

mi !

k !(mi −k)!
ηk (1−η)mi−k =

= η2mi (mi −1) .

(5.15)

2 Each bulk plasmon will create mi electron-hole pairs, described with a Pois-

son distribution with expected value m
(
Poiss(mi ;m) = e−m mmi

mi !

)
. Hence, we

need to account for all the possible values of mi , weighted by their probabil-
ity. The expected value of the number of possible combinations correlations
of photons produced by one bulk plasmon is then

A2,bi=1 =
∞∑

mi=0
A3Poiss(mi ;m) =

=
∞∑

mi=0
η2mi (mi −1)

e−mmmi

mi !
=

= m2η2 .

(5.16)
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If an electron creates more than one bulk plasmon, each of these plasmons
will decay into a certain amount of electron-hole pairs, with likelihood given
by a Poisson distribution with expectation value m, as already described.
Thus, we need to account for all the possible combinations of correlations
of photons produced by an arbitrary number bi of bulk plasmons. We start
with the case of two bulk plasmons, in which the expected value of the num-
ber of possible combinations of correlations of photons (the correlations can
be from photons from the same or different plasmon) becomes

A2,bi=2 =
∞∑

m1=0

∞∑
m2=0

η2(m1 +m2)(m1 +m2 −1)Poiss(m1;m)Poiss(m2;m) =

= 4m2η2 .
(5.17)

It can be shown by induction (see below) that in the general case of bi bulk
plasmons, which produce photons that can correlate with other photons from
the same plasmon or a different plasmon, the expectation value of the num-
ber of possible combinations of correlations is

A2,bi = b2
i m2η2 . (5.18)

1 Finally, the number of bulk plasmons produced by a single electron also fol-
lows a Poisson distribution with expected value b (Poiss(bi ;b)). Therefore,
averaging again over all possible values of bi , we obtain that the average num-
ber of possible combinations of correlations produced by one electron is

A1 =
∞∑

bi=0
b2

i m2η2Poiss(bi ;b) = bm2η2(b +1) . (5.19)

In the case of n electrons, the mean number of possible combinations of correla-
tions between photons from the same electron becomes:

Ac
b = n A1 = nbm2η2(b +1) . (5.20)

CORRELATIONS BETWEEN PHOTONS FROM DIFFERENT ELECTRONS (Ac
1)

Next, we need to calculate the number of possible combinations of correlations
between photons from different electrons. Taking into account the statistical dis-
tributions of each parameter involved in the emission of a photon (bulk plasmons,
carriers, emission efficiency), the average number of photons emitted per electron
is

Nph =
∞∑

bi=0

∞∑
mi=0

mi∑
k=0

kbi Poiss(bi ;b)Poiss(mi ;m)Bin(k;mi ,η) =

= bmη .

(5.21)
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We should note that the result is the same as if we would just consider the expected
values b, m and η given that the number of photons scales linearly with these pa-
rameters. We now need to create pairs between two photons from different elec-
trons. In this case the order is still important. We calculate the average number of
combinations of correlations of photons coming from different electrons as

Ac
uncorr =

[
nbmη

][
(n −1)bmη

]= n(n −1)b2m2η2 . (5.22)

g (2)(0) FOR A CONTINUOUS BEAM

Finally, we can insert Eqs. 5.20 and 5.22 into Eq. 5.13, rewrite n as a function of the
electron current, I = nq

B tb
. Given a typical acquisition time of a g (2)(τ) experiment

of at least 1 min, and bin size of tb = 0.512ns, the total number of bins becomes
B ≈ 1×1011. It is therefore reasonable to take the limit B →∞ to obtain

g (2)
cont(0) = lim

B→∞

1+ (2B +1)tb

2αb

b +1(
I tb B

q −1
)

b

=

= 1+ q

Iαb

b +1

b
.

(5.23)

The last expression can also be expressed in terms of the excitation efficiency γ (Eq.
5.6 in the main text, further explained in section 5.7.2) such that

g (2)
cont(0) = 1+ q

Iαb

log(γ−1)−1

log(γ−1)
. (5.24)

BUNCHING PEAK: DERIVATION OF MEAN NUMBER OF POSSIBLE COMBINATIONS OF

PHOTON CORRELATIONS FROM bi BULK PLASMONS BY INDUCTION

We want to find the expected value for number of combinations of correlations for
an arbitrary number of bulk plasmons. Similar to Eq. 5.17, in the case of j +1 bulk
plasmons, we have

A2,b= j+1 = η2
∞∑

m1=0
...

∞∑
m j =0

∞∑
m j+1=0

(
m̄ +m j+1

)(
m̄ +m j+1 −1

)
Pm̄P j+1 =

= η2
∞∑

m1=0
...

∞∑
m j =0

∞∑
m j+1=0

(
m2

j+1 +m j+1(2m̄ −1)−m̄ +m̄2
)

Pm̄P j+1 ,

(5.25)

where we have defined m̄ = m1 + ...+m j and Pm̄ is the product of Poisson distribu-

tions, i.e., Pm̄ = Poiss(m1;m)...Poiss(m j ;m) = ∏ j
i=1

e−m mi

i ! . Eq. 5.25 can be further
developed into

A2,b= j+1 = η2

[
m(m +1)+2 j m2 −m − j m +

∞∑
m1=0

...
∞∑

m j =0
m̄2Pm̄

]
. (5.26)

Therefore, we need to find an analytical expression for the last term in Eq. 5.26. We
assume that ∞∑

m1=0
...

∞∑
m j =0

m̄2Pm̄ = j m( j m +1) , (5.27)
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which we will prove by induction. In the case of j = 1,

∞∑
m1=0

m2
1P(m1;m) = m(m +1) . (5.28)

Assuming that Eq. 5.27 is true, we need to prove that in the case of j +1 bulk plas-
mons, it becomes ( j +1)m[( j +1)m]. Hence

∞∑
m1=0

...
∞∑

m j =0

∞∑
m j+1=0

(
m̄ +m j+1

)2 Pm̄P j+1 =

=
∞∑

m1=0
...

∞∑
m j =0

∞∑
m j+1=0

(
m̄2 +2m̄m j+1 +m2

j+1

)
Pm̄P j+1 =

= j m( j m +1)+2 j m2 +m(m +1) =
= ( j +1)m

[
( j +1)m

]
.

(5.29)

Finally, inserting Eq. 5.27 into Eq. 5.26, we obtain

A2,b= j+1 = ( j +1)2m2η2 . (5.30)

OBTAINING THE EXCITATION EFFICIENCY (γ)

For each electron, the probability of interacting, i.e., creating at least one plasmon
that can excite the quantum wells, or any other emitter, is

Pint = 1−Poiss(0;b) = 1−e−b , (5.31)

where b is the average number of bulk plasmons generated per electron (around
the emitter). We define γ as the fraction of electrons that create at least one bulk
plasmon near the emitter. Given a certain number of electrons ntotal, from which
ninteracting interact with the emitter, γ becomes

γ= ninteracting

ntotal
= ntotalPint

ntotal
= 1−e−b . (5.32)

NUMBER OF CORRELATIONS AT LONG DELAYS

We consider that electrons interact with the sample during a certain (square) time
window T = B tb , where B is the total number of bins and tB is the bin size. The dis-
tribution of the electrons in time can be represented as a uniform random distribu-
tion. The number of possible correlations between photons coming from different
electrons as a function of delay τ exhibits a triangular shape, with base correspond-
ing to 2T . This shape results from the convolution of two squared signals with width
T . Thus, in the model, the total number of correlations are spread within an area
corresponding to a triangle, with base (2B +1)tb and height h1. Figure 5.7 shows an
example of this effect. In the experiments, the typical acquisition time (at least sec-
onds) is much larger than the time window within which we acquire correlations
(30µs in our case for tb = 0.512ps), and thus this effect becomes negligible in the
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Figure 5.7: Theoretical shape of the number of possible correlations as a function of delay τ between
photons emitted after the exposure of the sample to an electron beam during a time T . Here, T = 10µs.
The observed triangular shape results from the convolution of two square pulses with base T . The inset
shows the curve at small delay, in which the triangular background is not observed.

narrow time window in which we analyze the data, i.e., we only see the very top of
the triangle. However, in the case of a pulsed electron beam, the time window cor-
responds to the pulse width ∆p. The correlations between photons from the same
or different pulses then exhibit a triangular shape, with base 2∆p, as a function of
τ. This is the shape that we observe in our g (2)(τ) measurements with the blanker
(inset of Fig. 5.3, main text).

CALCULATION OF α0 . DISCUSSION DISCRETE/CONTINUOUS

A key parameter in our analytical model is the relation between the height and the
area of the bunching peak, αb (shape factor). Given a known decay function of
the bunching peak, the shape factor can typically be easily calculated. In the case
of a simple exponential we obtain αb = 2τb , while for stretched exponential the

shape factor becomes αb = 2 τ
βΓ

(
1
β

)
. Nevertheless, g (2)(τ) measurements are dis-

crete, and thus these expressions for αb are only valid if the bin size tbin is much
smaller than the typical decay time, such that we can assume an almost continuous
function. Otherwise, the discretized nature of the measurement should be taken
into account. For example, the generalized expression for αbunching in the case of

an exponential decay with arbitrary bin size is αb = 2tb

1−e−tb /τb
, which becomes 2τb

when tb ¿ τb .

5.7.3. ANALYTICAL MODEL - PULSED ELECRON BEAM

In the case of a pulsed electron beam we need to adapt the definition of g (2)(0)
given in Eq. 5.1 of the main text. Here, we need to normalize the height at τ = 0,
with respect to the height of any other peak, Hi , which represents the uncorrelated
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events. Hence

g (2)
pulsed(0) = H(0)

Hi (i 6= 0)
. (5.33)

H(0) is the height of the peak at τ = 0. This peak will contain two contributions:
correlations between photons from the same electron (with mean number of possi-
ble combinations Ap

b ) and between photons from different electron but same pulse

(Ap
uncorr,0). As discussed in main text, the first contribution will be distributed over

a temporal shape (with height hp
b and area Ap

b ) determined by the emitter decay,

through Eq. 5.7. Hence, the ratio between the area and the height is: hp
b = αb Ap

b ,
similar to the bunching contribution in the continuous case. In contrast, the tem-
poral distribution of the correlations between photons from different electrons but
same pulse (second contribution of τ= 0 peak) depends not only on the emitter de-
cay but also the shape of the electron pulse. Hence, the shape of this contribution
is given by the convolution of two electron pulses, convoluted also with the emitter
decay (see 5.7.4). We define the ratio between the area (Ap

uncorr,0) and the height

(hp
uncorr,0) of this part as: Auncorr,0 =αconvhp

uncorr,0.

huncorr,i (i 6= 0) is the height of any peak at τ 6= 0, i.e., containing correlations be-
tween photons from consecutive pulses (i =±1), from every second pulse (i =±2)
and so on. The shape of any of these peaks is also determined by the electron pulse
shape and emitter decay, hence we can define: Auncorr,i = αconvhp

uncorr,i . Ap
uncorr,i

contains the possible correlations between photons from different pulses.

Taking the previous definitions into account, we can rewrite Eq. 5.33 as

g (2)
pulsed(0) =

hp
b +hp

uncorr,0

hp
uncorr,i

=
αconv Ap

b +αb Auncorr,0

αb Auncorr,i
. (5.34)

CORRELATIONS BETWEEN PHOTONS FROM THE SAME PULSE

Correlations between photons from the same electron (Ap
b )

The mean number of possible combinations of correlations between photons
from the same electron, i.e., leading to bunching, is given in Eq. 5.19, which we have
to multiply by the number of electrons per pulse and the total number of pulses (r )

Ap
b = r b(b +1)m2η2

∞∑
ni=0

ni Poiss(ni ;ne ) = r ne b(b +1)m2η2 . (5.35)

Here we have assumed that the number of electrons per pulse ni follows a Pois-
son distribution with expected value ne . This will be the case in most experiments,
such as in the beam blanker and photoemission of electron pulses described in the
main text. However, we would obtain the same result if we consider the number of
electrons per pulse fixed, given that Ap

b scales linearly with ni .

Correlations between photons from different electrons within the same pulse (Ap
uncorr,0)

Given the average number of emitted photons per electron Nph (Eq. 5.21), the
number of combinations of correlations between photons from the same pulse, but
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different electron, becomes

Ap
uncorr,0 = b2m2η2

∞∑
ni=0

ni (ni −1)Poiss(ni ;ne ) = r n2
e b2m2η2 . (5.36)

CORRELATIONS BETWEEN PHOTONS FROM DIFFERENT PULSES (Ap
UNCORR,i )

Following from Eq. 5.21, which gives the average number of photons emitted per
electron, and assuming ni electrons per pulse (Poisson-distributed), the average
number of photons emitted per pulse is

Np = bmη
∞∑

ni=0
ni Poiss(ni ;ne ) = ne bmη . (5.37)

The number of possible correlations between photons from different pulses is there-
fore

Ap
uncorr,r = r (r −1)n2

e b2m2η2 , (5.38)

which is distributed over 2(r − 1) peaks, given that we do not count the peak at
τ= 0, which would contain correlations between photons from the same pulse. We
also need to take into account that the peaks at τi are contained within a triangu-
lar envelope, given that the number of possible correlations decreases as the delay
between pulses increases, as explained in section 5.7.2.

Hence, the area below each peak at τi becomes

Ap
uncorr,i =

2Ap
uncorr,r

2(r −1)
= r n2

e b2m2η2 . (5.39)

g (2)(0) FOR A PULSED ELECTRON BEAM

Finally, inserting Eqs. 5.35, 5.36 and 5.39 into Eq. 5.34 we obtain

g (2)
pulsed(0) = 1+ αconv

αb

b +1

ne b
= 1+ αconv

neαb

log(γ−1)−1

log(γ−1)
. (5.40)

In which again we have used the relation between b and γ given in Eq. 5.6 of the
main text.

ALTERNATIVE CALCULATION OF γ FOR A PULSED ELECTRON BEAM

In the case of a pulsed electron beam, we don’t need to calculate g (2)(0) to retrieve
the excitation efficiency γ, but we can simply divide the sum of Eqs. 5.35 and 5.36
by Eq. 5.39, which results in

Ap
b + Ap

uncorr,0

Ap
uncorr,i

= 1+ b +1

ne b
= 1+ 1− log(1−γ)

ne log(1−γ)
. (5.41)

which corresponds to Eq. 5.10 in the main text. In experiments, this ratio would be
equivalent to dividing the sums of all the counts below the peak at 0 delay with the
sum of the counts below any other peak.
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ALTERNATIVE DERIVATION OF g (2)
PULSED(0) IN PHOTOEMISSION

The previous derivation of g (2)(0) assumes that bunching comes only from corre-
lations between photons from the same electron. However, in the case of electron
pulses obtained by photoemission, several electrons might excite the sample in-
stantaneously (i.e., within a ps timescale, much smaller than the emitter decay). In
this case bunching comes from correlations between photons from the same pulse,
and it doesn’t matter whether they come from the same or different electrons. Here
we show a derivation of g (2)(0) starting from the point that all electrons within a
pulse will create bunching, and show that it results in the same expression as Eq.
5.12 (main text).

We assume that the duration of the electron pulses is much smaller than the
emitter lifetime. Hence, all peaks will have the same shape. In particular, the area
below the bunching peak (peak at τ= 0) is related to its height as: A′

b =αbh′
b . Sim-

ilarly, any other peak τi (i 6= 0) follows the same relation: A′
i = αbh′

i . Eq. 5.34 can
now be written as

g (2)
ultrashort,v2(0) = A′

b

A′
i

. (5.42)

We first calculate the area below the bunching peak, i.e., A′
b . The first steps are

the same as in the continuous case. From Eq. 5.18 we know that given bi bulk
plasmons, the mean number of combinations of correlations is b2

i m2η2. Assuming
that we have ni electrons per pulse, each of them can create a different number of
plasmons bi . The case of ni = 1 is derived in Eq. 5.19. In the case of ni = 2,

Ani=2 =
∞∑

b1=0

∞∑
b2=0

(b1 +b2)2m2η2Poiss(b1;b)Poiss(b2;b) = 2bm2η2(2b +1) . (5.43)

In the general case of ni electrons per pulse, it can be shown (through a similar
demonstration by induction as for A2,bi in section 5.7.2) that

Ani = ni bm2η2(bni +1) . (5.44)

Finally, the number of electrons per pulse is not fixed but follows a Poisson dis-
tribution with expected value ne . Moreover, we need to multiply this by the total
number of pulses exciting the sample during a measurement (r ). Hence, the aver-
age number of combinations of pair-correlations leading to bunching becomes

A′
b = r bm2η2

∞∑
ni=0

ni (bni +1)Poiss(ni ;ne ) = r ne bm2η2(ne b +b +1) . (5.45)

The area below each peak i , containing the number of combinations of pair-correlations
between photons from different pulses (consecutive pulses, every second pulse,
etc) was already calculated in Eq. 5.39. Hence,

A′
i = Ap

uncorr,i =
2Ap

uncorr,r

2(r −1)
= r n2

e b2m2η2 . (5.46)
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Inserting Eqs. 5.45 and 5.46 into Eq. 5.42 yields

g (2)
ultrashort,v2(0) = 1+ b +1

ne b
, (5.47)

which is the same as g (2)
ultrashort,v2(0) given in Eq. 5.12 of the main text, which was

obtained by setting αconv =αb in Eq. 5.9.

5.7.4. FULL DESCRIPTION OF g (2)(τ)
In the previous sections we have derived the value of g (2)(0), but we have not dis-
cussed yet the full shape of the autocorrelation function as a function of delay (i.e.,
g (2)(τ)). In the continuous case, the shape of g (2)(τ) only depends on the bunching
peak, while in pulsed experiments g (2)(τ) depends also on the temporal shape of
the electron pulses, as will be seen below.

SHAPE OF THE BUNCHING PEAK

Given a certain function y(t ), the result of its autocorrelation is [140]

h(τ) =
∫ ∞

−∞
y(t )y(t +τ)d t = y(−τ)∗ y(τ) . (5.48)

In the case of the bunching peak in a g (2)(τ) measurement, y(t ) = yemitter(t ) and
h(τ) = ybunching(τ), as given in Eq. 5.7 in the main text.

SHAPE OF UNCORRELATED PEAKS IN A PULSED ELECTRON BEAM

As we have already discussed, a g (2)(τ) measurement in pulse shows peaks centered
at 0-delay and delays τi (i = ±1,±2. . . ) corresponding to the time between pulses.
The peak at τ = 0 has contributions from bunching, which result in a shape deter-
mined by the emitter (as shown in Eq. 5.48 and Eq. 5.7 in the main text), and from
uncorrelated photons, i.e., coming from different electrons. The peaks at τi (i 6= 0)
contain uncorrelated photons, i.e., coming from different pulses. In all cases in
which there are correlations between photons from different electrons, the shape
of the electron pulse also plays a role, together with the emitter decay. The function
defining the probability of emitting a photon coming from a pulsed electron beam,
as a function of time (y(t )), is given by the convolution between the electron pulse
shape (p(t )) and emitter decay (yemitter(t )), i.e.,

y(t ) = p(t )∗ yemitter(t ) (5.49)

Using Eq. 5.48, the correlation between two photons with temporal spread y(t )
becomes

hp
uncorr(τ) = [

p(−τ)∗ yemitter(−τ)
]∗ [

p(τ)∗ yemitter(τ)
]= [

p(τ)∗p(τ)
]∗hb(τ) ,

(5.50)
where in the last step we have used the definition of hb(τ) from Eq. 5.7 in the main
text.
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Figure 5.8: (a) TCSPC measurement on quantum wells, performed using a pulsed electron beam gener-
ated by photoemission (black) together with the corresponding fit with a stretched exponential (green).
The best fit is obtained when τemitter = 11ns and βemitter = 0.73. (b) g (2)(τ) measurement performed
on the same area on the sample and identical conditions as in (a) (black), together with the result from
Eq. 5.48 using the emitter parameters from (a) (red) and a stretched exponential using the emitter pa-
rameters. The model (Eq. 5.48) shows a very good agreement with the data.

COMPARISON TO EXPERIMENTS: STRETCHED EXPONENTIAL DECAY

In order to test the validity of Eq. 5.7 (main text) (same as Eq. 5.48), describing the
shape of the bunching peak, we performed time-correlated single-photon counting
measurements (TCSPC) on the sample. We subsequently acquired a g (2)(τ) mea-
surement with exactly the same conditions. The TCSPC measurements were per-
formed using a pulsed electron beam obtained by photoemission, with the same
conditions as in the g (2)(τ) photoemission experiments (here, ne = 347 electrons/pulse),
and the data is collected in the same way as explained in chapter 3 (section 3.4.3).
In these measurements, a histogram of the arrival time of photons following the
electron pulse is built, and thus they directly show the emission decay. Figure 5.8a
shows the resulting decay trace. We observe that the trace can be best fitted us-
ing a stretched exponential (Eq. 5.8). In this case we find that τemitter = 11ns and
βemitter = 0.73. The histogram obtained in the corresponding g (2)(τ) measurement
is shown in Figure 5.8b. We observe that the bunching peak cannot be properly de-
scribed with a stretched exponential using τemitter andβemitter as parameters (green
curve). Instead, the result of solving numerically Eq. 5.48 with the emitter parame-
ters exhibits a very good agreement with the data (red curve).

The discrepancy between the shape of the g (2)(τ) curve and the actual emitter
decay when the latter follows a stretched exponential could explain the different
lifetimes obtained in ref. [49] when comparing g (2)(τ) and decay trace measure-
ments.

Single and double exponential decays

In most systems, the decay mechanism can be approximated with a single or
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double exponential decay. Solving Eq. 5.48 in those cases yields: ybunching(τ) ∝
eτ/τ1 and ybunching(τ) ∝ eτ/τ1 + eτ/τ2 , for single and double exponential decays, re-
spectively. Therefore, in both cases the decay of the g (2)(τ) function directly gives
the decay of the emitter.

COMPARISON TO EXPERIMENTS: SQUARE ELECTRON PULSE

The experiments using the beam blanker are performed using square electron pul-
ses, with pulse width ∆p determined by the blanking conditions (repetition rate
and duty cycle) (see below, section 5.7.6). Hence, the pulse shape is given by

p(t ) =
{

1 0 ≤ t ≤∆p

0 otherwise
(5.51)

and the emitter decay yemitter(t ) follows a stretched exponential (Eq. 5.8). The
shape of the peaks at τi (i 6= 0) then become (Eq. 5.50)

hp
uncorr(τ) = T (τ)∗ [

yemitter(−τ)∗ yemitter(τ)
]= T (τ)∗hb(τ) , (5.52)

where T (τ) is a triangular function with base ∆p, resulting from the convolution of
p(t ) with p(−t ).

5.7.5. CORRECTION AT LONG DELAYS

In a g (2)(τ) measurement, when the delay is longer than the typical correlation time
(in our case, the emitter lifetime), we expect all events to be uncorrelated, thus
exhibiting a constant amplitude. In the case of a continuous electron beam, this
means that the g (2)(τ) curve is constant for τÀ 0, while in the pulsed case, we still
observe peaks at the delays corresponding to the time between pulses, all of them
with the same amplitude. Nevertheless, this is not typically what we observe in ex-
periments. Figure 5.9 shows the raw data of two g (2)(τ) measurements, in continu-
ous (a) and pulsed (b) mode. In both cases we observe that the number of counts
decreases with increasing τ, contrary to what we would expect from the theory. This
is due to an experimental artifact in the Hanbury-Brown and Twiss experiment. In
the experiment, the emitted light is split into two beams with a 50:50 beam split-
ter. Each beam is directed towards one detector, connected to the time correlator.
When one of the detectors receives a photon, the time correlator starts counting
until a photon is received on the second detector. Therefore, having a count at a
certain delay τmeans that the second detector does not receive any photon during
the time τ. This becomes very unlikely with increasing τ, thus producing the effect
observed in the figure.

One way to avoid this artifact is by having a very low count rate on each detector,
such that the probability of having two (uncorrelated) photons emitted within a
time smaller than τ becomes very low. Nevertheless, this can result in very long
acquisition times (in the order of hours) or low signal-to-noise ratios. In our case,
we decided to keep the number of counts relatively high (typically 1×104 counts/s)
and correct for this artifact during the data analysis. We observe that the evolution
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Figure 5.9: Raw data from a g (2)(τ) experiment with a (a) continuous and (b) pulsed (by photoemission)
electron beam. The data show that the number of counts decrease for long delays due to an experimen-
tal artifact in the HBT experiment. The green and red curves show the fits using an exponential decay to
account for this artifact. The obtained average decays are τlong = 31 and 769µs for (a) and (b), respec-
tively. The insets show a zoom in for small delays, in which this artifact is not visible.

of the signal over τ due to this artifact follows an exponential decay, with average
decay τlong. The fits obtained when applying this decay are shown in Figure 5.9,
for which we obtained τlong = 31 and 769µs, respectively. This procedure is valid as
long as τlong is much larger than the bunching decay and pulse width, in the case
of a pulsed electron beam. Otherwise, artifacts due to this effect would also affect
the value of g (2)(0).

5.7.6. EXPERIMENTAL DETAILS

All measurements are performed while focusing the electron beam on a single spot
on the sample. The electron current is measured by collecting the beam current
through a Faraday cup and reading it with a picoammeter.

BEAM BLANKER

The experiments using a beam blanker are performed using the same microscope
as in ref. [49]. In our case, a 400µm aperture is placed right below the pole piece.
The distance between the blanking plates is kept to 2 mm for all experiments. In
contrast to previous work, here we apply a square signal on one of the blanking
plates, with peak-to-peak amplitude of 5 V and offset 2.5 V. The other plate is grounded.
This results in a square electron pulse, with pulse width determined by the duty cy-
cle D and repetition rate F , i.e., ∆p = (1 − D)/F . In order to confirm the shape
of the electron pulse, we performed decay trace measurements on the QWs while
blanking the beam. Figure 5.10 shows two examples of traces, both obtained using
D = 0.6 and repetition rate F = 0.5 and 6 MHz, respectively. We fitted the data using
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Figure 5.10: Decay traces on the QWs obtained using an electron beam blanker, with repetition rate (a)
0.5 and (b) 6 MHz. The fits are obtained using Eq. 5.53, showing that the electron pulses can be described
as a square pulse with pulse width of 796 and 62 ns, for (a) and (b) respectively.

the following equation

f (t ) =


B t ≤ t0

A

(
1−e−

(t−t0)β

τ

)
+B t0 ≤ t ≤ t1

Ae−
(t−t1)β

τ +B t > t1 ,

(5.53)

where τ = 8.6ns and β = 0.63 are the parameters describing the QW radiative de-
cay, A is the amplitude of the signal and B is the background signal. The pulse width
can be obtained from∆p = t1−t0. In the experiments we obtain pulse widths of 796
and 62 ns, for Figure 5.10(a) and (b) respectively, which are very close to the theo-
retical values at these conditions (800 and 66 ns, respectively). These experiments
were performed using an electron energy of 10 keV, but we do not expect significant
deviations when changing the electron energy to 8 keV.

Even though the experimental data shows an almost perfect square electron
pulses, small deviations from this can arise when changing parameters, especially
when increasing the duty cycle and repetition rate. In order to account for this, we
measured the electron current in continuous mode Ic (i.e., in blanking conditions
but without any signal driving the blanking plates) and in pulsed Ip (square sig-
nal driving one of the plates). The relation between both magnitudes is given by
Ip = Ic (1−D). Figure 5.11a shows the value of electron current in pulsed Ip mea-
sured at different repetition rates. These measurements were performed at 8 keV
and D = 0.95, with the same blanking conditions as for the g (2)(τ) measurements
using the blanker in the main text. The figure also shows the expected value of
Ip (red curve), given a continuous current of Ic = 213.9pA. We observe that the
measured values are slightly lower than the expected ones, and the discrepancy in-
creases with increasing repetition rate. These measured values of Ip were used to
calculate the number of electrons per pulse in Fig. 5.3 of the main text. The pulse
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Figure 5.11: (a) Electron beam current measured in pulsed conditions using a beam blanker as a func-
tion of repetition rate. The red curve represents the theoretical current that we should obtain given a
continuous current of 213.9 pA, and duty cycle of 0.95. (b) Pulse duration extracted from the experimen-
tal values of electron current in pulsed in (a), together with the theoretical value of the pulse width (red
curve).

duration of the electron beam can also be extracted from these measurements,
given that ∆p = Ip /(Ic F ). Figure 5.11b shows the value of pulse width obtained us-
ing the experimental values of Ip (black dots) compared to the theoretical values,
given by ∆p = (1−D)/F (red curve).

LASER-DRIVEN ELECTRON SOURCE (PHOTOEMISSION)

Ultrashort (ps) pulses are obtained by focusing the 4th harmonic (258 nm) of an
Yb-doped femtosecond laser (λ= 1035nm,250 fs pulses) onto the electron cathode.
The experiments are performed using a Quanta 250 FEG SEM. In order to suppress
continuous emission, the filament current is reduced from 2.35 down to 1.7 A. The
extractor voltage is also lowered from the typical 4550 value down to 650 V. These
settings allow us to achieve a high number of electrons per pulse, at the expense of
lower spatial resolution, as explained in chapter 2.

5.7.7. CATHODOLUMINESCENCE WITH 8 KEV ELECTRONS

Figure 5.12 shows the CL spectrum obtained when exciting the sample with a con-
tinuous 8 keV electron beam, corresponding to the energy used in the experiments
using the beam blanker. Most of the emission comes from the QW emission (410-
490 nm). The inset shows a schematic of the structure of the sample together with
Monte Carlo simulations of the trajectory of an 8 keV electron inside the sample,
performed with the Casino software [1]. Each dot in the plot corresponds to an in-
elastic collision of the primary electron beam with the sample, while the color indi-
cates the energy of the primary electron beam. We observe that barely any electron
reaches the QWs, thus explaining the low excitation efficiency obtained at 8 keV
(γ= 0.05).
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Figure 5.12: CL spectrum obtained after excitation with an 8 keV continuous electron beam (213.5 pA).
Inset: schematic of the InGaN/GaN quantum well stack overlaid with the simulations of the trajectory
of an 8 keV electron inside the sample.
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Figure 5.13: g (2)(τ) measurements obtained with a 10 keV continuous electron beam at three different
spots on the sample. The solid lines are the fits from Eq. 5.48 when y(t ) is a stretched exponential, with
fit parameters τe = τemitter and βe =βemitter.

5.7.8. DEPENDENCE OF QW EMISSION DECAY ON AREA

In the main text we show g (2)(τ) measurements performed using the different elec-
tron beam configurations (continuous, pulsed with blanker and pulsed with pho-
toemission), in each case exhibiting different decay lifetimes (τemitter and βemitter).
Here we prove that the main reason for this discrepancy is the inhomogeneity in
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the sample. Figure 5.13 shows g (2)(τ) measurements performed using a continu-
ous electron beam on different spots on the sample. The curves were obtained at
10 keV with beam currents of 10.6, 14.1 and 34 pA (green, blue and yellow curves,
respectively). Each experimental curve (data points) is accompanied by the corre-
sponding fit (solid lines), obtained by solving numerically Eq. 5.48 when y(t ) is a
stretched exponential. We observe that τemitter strongly depends on the position
of the sample, ranging from 3.7 to 7.3 in these three examples. Instead, βemitter re-
mains in the 0.61-0.64 range.




